Qualitative

CAREER: Exploring Teacher Noticing of Students' Multimodal Algebraic Thinking

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

Award Number: 
1942580
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Effective teachers of mathematics attend to and respond to the substance of students' thinking in supporting classroom learning. Teacher professional development programs have supported teachers in learning to notice students' mathematical thinking and using that noticing to make instructional decisions in the classroom. This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

To study teacher noticing of multimodal algebraic thinking, this project will facilitate video club sessions in which teachers examine and annotate classroom video. The video will allow text-based and visual annotation of the videos to obtain rich portraits of the thinking that teachers notice as they examine algebra-related middle school practice. The research team will create a video library focused on three main algebraic thinking areas: equality, functional thinking, and proportional reasoning. Clips will be chosen that feature multimodal student thinking about these content areas, and provide moments that would be fruitful for advancing student thinking. Two cohorts of preservice teachers will engage in year-long video clubs using this video library, annotate videos using an advanced technological tool, and engage in reflective interviews about their noticing practices. Follow-up classroom observations will be conducted to see how teachers then notice multimodal algebraic thinking in their classrooms. Materials to conduct the video clubs in other contexts and the curated video library will be made available, along with analyses of the teacher learning that resulted from their implementation.

CAREER: Promoting Equitable and Inclusive STEM Contexts in High School

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

Award Number: 
1941992
Funding Period: 
Sat, 02/01/2020 to Fri, 01/31/2025
Full Description: 

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. An important barrier to persistence in STEM fields for marginalized groups, including women and ethnic minorities, relates to a culture in many STEM organizations, such as academic institutions, that fosters discrimination, harassment and prejudicial treatment of those from underrepresented groups. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes. Further, this work will explore how to create schools where students stand-up for each other and support each other so that any student who is interested will feel welcome in STEM classes and programs.

This research aims to examine cultures of discrimination and harassment in STEM contexts with attention to: 1) assessing STEM climates in high schools in order to identify the character of discrimination and harassment, 2) understanding how youth think about these instances of bias and discrimination; 3) identifying pathways to resilience for underrepresented youth pursuing STEM interests, and 4) testing an intervention to promote bystander intervention from those who witness discrimination and harassment in STEM contexts. This research will take an intersectional approach recognizing that those who are marginalized by multiple dimensions of their identity may experience STEM contexts differently than those who are marginalized by one dimension of their identity. Because adolescence is a critical developmental period during which youth are forming their attitudes, orientations and lifelong behaviors, this research will attend to issues of bias and discrimination well before individuals enter college STEM classrooms or the STEM workforce: namely, during high school. Further, this work will examine the creation of equitable STEM climates in both college-preparation classes as well as workforce development STEM programs offered though or in partnership with high schools. This research will provide clear evidence to document the current culture of STEM contexts in high schools, using mixed methods, including surveys, qualitative interviews and longitudinal measurement. Further, the project will involve development and implementation of an intervention, which will provide the first test of whether bystander intervention can be fostered in STEM students and will involve training STEM students in key 21st century skills, such as social-cognitive capacities and interpersonal skills, enabling them to speak up and support peers from marginalized backgrounds when they observe discrimination and harassment.

CAREER: Understanding Latinx Students' Stories of Doing and Learning Mathematics

This project characterizes and analyses the developing mathematical identities of Latinx students transitioning from elementary to middle grades mathematics. The central hypothesis of this project is that elementary Latino students' stories can identify how race and language are influential to their mathematical identities and how school and classroom practices may perpetuate inequities.

Lead Organization(s): 
Award Number: 
1941952
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Although the Latino population throughout the United States continues to increase, various researchers have shown that Latino students are often not afforded high quality learning experiences in their mathematics classrooms. As a result, Latino students are underrepresented in higher level mathematics courses and careers involving mathematics. Having a better understanding of Latino students' perspectives and experiences is imperative to improving their opportunities to learn mathematics. Yet, little research has made central Latinos students' perspectives of learning and doing mathematics, especially over a critical period of time like the transition from elementary to middle school. The goal of this study will be to improve mathematics teaching and learning for Latino youth as they move from upper elementary to early middle school mathematics classrooms. The project involves three major parts: investigating the policy, media, and oral histories of Latino families/communities to understand the context for participating Latino students' mathematics education; exploring Latino students' stories about their experiences learning and doing mathematics to understand these students' perspectives; and creating documentary video portraitures (or composite cases) of participants' stories about learning and doing mathematics that can be used in teacher preparation and professional development. Finally, the project will look across the experiences over the duration of the project to develop a framework that can be used to improve Latino students' mathematics education experiences. This project will provide a window into how Latino students may experience inequities and can broaden mathematics educators' views on opportunities to engage Latino students in rigorous mathematics. The project will also broaden the field's understanding of how Latino students racial/ethnic and linguistic identities influence their experiences learning mathematics. It will also identify key factors that impact Latino students' experiences in learning mathematics to pinpoint specific areas where interventions and programs need to be designed and implemented. An underlying assumption of the project is that carefully capturing and understanding Latino students' stories can illuminate the strengths and resilience these students bring to their learning and doing of mathematics.

This research project characterizes and analyses the developing mathematical identities of Latinx students transitioning from elementary to middle grades mathematics. The overarching research question for this study is: What are the developing stories of learning and doing mathematics of Latino students as they transition from elementary to middle school mathematics? To answer this question, this study is divided into three phases: 1) understanding and documenting the historical context by examining policy documents, local newspaper articles, and doing focus group interviews with community members; 2) using ethnographic methods over two years to explore students' stories of learning and doing mathematics and clinical interviews to understand how they think about and construct arguments about mathematics (i.e., measurement, division, and algebraic patterning); and 3) creating video-cases that can be used in teacher education. Traditional ways of teaching mathematics perpetuate images of who can and cannot do mathematics by not acknowledging contributions of other cultures to the mathematical sciences (Gutiérrez, 2017) and the way mathematics has become a gatekeeper for social mobility (Martin, Gholson, & Leonard, 2010; Stinson, 2004). Focusing on Latino students' stories can illuminate teachers' construction of equitable learning spaces and how they define success for their Latino students. The central hypothesis of this project is that elementary Latino students' stories can identify how race and language are influential to their mathematical identities and how school and classroom practices may perpetuate inequities. Finally, the data and video-cases will then be used to develop a conceptual framework for understanding the development of the participating students' developing mathematical identities. This framework will provide an in-depth understanding of the developing racial/ethnic, linguistic, and mathematical identities of the participating Latino students. The educational material developed (e.g. video documentaries, discussion material) from this project will be made available to all interested parties freely through the project website. The distribution of these materials, along with further understanding of Latino students' experiences learning mathematics, will help in developing programs and interventions at the elementary and middle grade level to increase the representation of Latino students in STEM careers. Additionally, identifying the key factors impacting Latino students' experiences in learning mathematics can pinpoint specific areas where interventions and programs still need to be designed and implemented. Future projects could include the assessment of these programs. This project will also inform the development of professional learning experiences for prospective and practicing teachers working with Latino or other marginalized students.

Early Emergence of Socioeconomic Disparities in Mathematical Understanding

This study will provide foundational knowledge about the activities and interactions in the home environment that drive the early emergence of math skills disparities related to SES.

Project Email: 
Lead Organization(s): 
Award Number: 
1920545
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

The math skills of children from high income families have grown faster than those of children from middle- or low-income families resulting in a significant and persistent gap. These disparities emerge in preschool and are larger by the start of kindergarten. As children progress through school, the gap in math skills persists or even widens. Importantly, SES-related disparities in math skills have implications for long-term academic achievement and educational attainment, as well as access to STEM education and professions in adulthood. As such, there is an urgent need to identify the factors shaping early math development before children start formal schooling. This investigation will provide foundational knowledge about the activities and interactions in the home environment that drive the early emergence of math skills disparities related to SES. In the long term, findings from this work could inform home visitation programs and early care and education curricula aimed at strengthening the early math skills of children living in low resourced communities. The knowledge generated by this study has the potential to enhance equity in access to STEM education and professions for all children.

Using a longitudinal sequential study of two cohorts of socioeconomically diverse 30-month-olds (N = 320) and their parents, the proposed study will strengthen knowledge of the etiology of SES disparities in math skills by addressing three aims. First, it will examine associations between the home learning environment (HLE) and early math skills. Second, it will describe SES disparities in HLE and their implications for math learning. Third, it will test family stress and family culture as pathways through which SES shapes HLE and early math skills. Children will complete assessments of early math skills and other general cognitive abilities at age 30 months and again around 42-47 months. In addition to the child assessments at 30 months, in-home structured observations with a parent, parent surveys, and time diaries will measure the quantity and quality of children's opportunities for math learning at home. To measure family stress, parents will complete questionnaires assessing general stress as well as stress specifically related to performing and teaching math. To measure family culture, parents will complete questionnaires assessing their general and math-specific parenting beliefs and observations of family interactions will be conducted. This study will test whether domain-general and math-specific family stress and culture mediate the relation between HLE and SES. In sum, this study will make contributions to understanding the early emergence of economic disparities in early math skills. Theoretically, it will delineate whether domain-general or math-specific differences in HLE explain disparities in early math skills related to socioeconomic status. It will advance research by concurrently considering the roles of stress and culture in shaping disparities in children's opportunity to learn math in their early home environments. This project is funded by the EHR Core Research program, which emphasizes STEM education research that will generate foundational knowledge in the field.

Alternative video text
Alternative video text: 

Design and Implementation of Immersive Representations of Practice

This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.

Lead Organization(s): 
Award Number: 
1908159
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

Various researchers have documented that a large proportion of preservice teachers (PSTs) demonstrate less sophisticated professional knowledge for teaching both fractions and multiplication/division. Use of representations of practice (i.e., video, animation), and accompanying annotation technology, are effective in improving such professional knowledge, but PSTs continue to demonstrate a lack of precision in attending to or noticing particular mathematics in classroom scenarios. Fortunately, a new technology, 360-degree video, has emerged as a means of training novices for professional practice. This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction. Specifically, PSTs demonstrate difficulty in synthesizing explicit knowledge learned in the college classroom with tacit professional knowledge situated in professional practice. The initial pilot of the technology resulted in PSTs demonstrating specific attention to the mathematics. The purpose of the project will be to investigate how PSTs' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations (technologically embedded scaffolds). To do this, the project will examine where and what PSTs attend to when viewing 360-degree videos, both at a single point in the classroom and through incorporating multiple camera-perspectives in the same class. Additionally, the project will examine the role of annotation technology as applied to 360-degree video and the potential for variations in annotation technology. Findings will allow for an improved understanding of how teacher educators may support PSTs' tacit and explicit knowledge for teaching. The project will make video experiences publicly available and the platform used in the project to create these video experiences for teacher educators to use, create, and share 360-degree video experiences.

The project will examine how representations of practice can facilitate preservice teachers' professional knowledge for teaching fractions and multiplication/division. The project will: examine the effect of single versus multiple perspective in PSTs' professional knowledge; examine how PSTs use annotation technology in immersive video experiences, and its effect on PSTs' professional knowledge for teaching fractions and multiplication/division; and design a platform for teacher educators to create their own 360 video immersive experiences. Using an iterative design study process, the project team will develop and pilot single and multi-perspective 360-degree video experiences in grade 3-5 classrooms including developing a computer program to join multiple 360-degree videos. They will also develop an annotation tool to allow PSTs to annotate the single and multi-perspective 360 video experiences. Using a convergent mixed methods design, the project team will analyze the quantitative data using multiple regressions of pre-post data on mathematical knowledge for teaching and survey data on PSTs reported immersion and presence in viewing the videos to compare single and multi-perspective 360-degree video data. They will also qualitatively analyze heat maps generated from eye tracking, written responses from PSTs' noticing prompts, and field notes from implementation to examine the effect of single versus multiple perspectives. The team will use similar methods to examine how PSTs use the annotation technology and its effect. The results of the research and the platform will be widely disseminated.

Teaching Science Outdoors: A Next Generation Approach for Advancing Elementary Science Teaching in Urban Communities

This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.

Lead Organization(s): 
Award Number: 
1907506
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project addresses a long-standing challenge in science education centered on providing meaningful science education opportunities to students living in communities of high poverty and attending under-resourced elementary schools. These students are significantly less likely to receive high-quality science learning opportunities and to be encouraged to engage in (rather than simply learn about) science. This Michigan State University research project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. It builds on and advances prior outdoor education work for the current context of science education that requires elementary teachers to engage students in making sense of phenomena using next generation science and engineering practices. The goal of this project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms. It also will advance knowledge on ways to bridge informal and formal learning environments. To achieve these goals, the project will develop, enact and study a program that involves a scaffolded series of summer professional development sessions focused on outdoor learning and school year follow-up meetings and classroom-based coaching for elementary teachers and informal educators from two high-need districts.

Design-based research will be utilized to: 1) foster teacher practices and study how these develop over time, 2) work with teachers to measure student outcomes, and 3) determine what aspects of this formal/informal approach are productive, measures of student engagement and student learning artifacts--will be analyzed. The project will serve as a model for developing partnerships between informal science organizations, educators, and K-12 programs. Revised measures and outcomes of teacher practices and student learning; outdoor-focused lesson plans; cases illustrating how elementary teachers develop and enact NGSS-aligned outdoor lessons; a revised informal-formal theoretical model; and information about dissemination of products including facilitation guidelines and coaching approaches will be developed and disseminated.

The School Gardeners' Southwest Desert Almanac: A Conference for Supporting, Sustaining, and Spreading Garden-Based Science Teaching

Focusing on the Southwest Desert ecoregion, this conference addresses the need for research on effective instructional methods that can be used to support students' science learning in school gardens. The conference will lead to the development of an ecoregional model for garden-based science teaching (GBST) that builds on regional ecological and cultural resources to engage teachers and students in richer and more relevant science learning experiences.

Award Number: 
1908886
Funding Period: 
Thu, 08/15/2019 to Fri, 07/31/2020
Full Description: 

Garden-based science teaching (GBST) integrates formal and informal learning, provides teaching opportunities in a wide range of science topics (e.g., soil science, ecology, botany), and creates a place for those topics to be locally and culturally relevant. A proliferation of school gardens nationwide reveals a significant increase (42%) in the creation of school gardens between 2013-2015 (USDA, 2015). As students increasingly engage in science learning in school gardens, the demand for high-quality instruction also grows. However, much of the available research on school gardens emphasizes health and nutrition interventions, without also characterizing the instructional practices of science. This conference addresses the need for research on effective instructional methods that can be used to support students' science learning in school gardens. The conference will focus on the Southwest Desert ecoregion. The ecoregion focus is driven by the longstanding challenges of coordinating a national model of GBST across ecoregion differences, by concentrating on states and sites whose problems and opportunities reflect common ecoregion conditions. This conference will lead to development of an ecoregional model for GBST that builds on regional ecological and cultural resources to engage teachers and students in richer and more relevant science learning experiences.

This conference will organize and implement collaborative activities during and after a 2-1/2 day meeting in Arizona. It will involve 35 participants comprised of teachers (grades K-5), teacher educators, educational researchers, and science content specialists who collectively bring experience with science teaching in school gardens, culturally relevant pedagogy, traditional agricultural practices, and science practices. Conference activities will draw upon participatory design research methods to understand how, when, and why educational innovations work in practice. A key product of the conference and post-conference activities will be an ecoregion model of GBST as instantiated by The School Gardeners' Southwest Desert Almanac. The Almanac will be an online resource for information on GBST, collaboratively produced by practitioners and researchers during- and post-conference activity. This website will feature curated resources such as a multi-media set of case studies illustrating GBST instructional practices.

Crowdsourcing Neuroscience: An Interactive Cloud-based Citizen Science Platform for High School Students, Teachers, and Researchers

This project will develop a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms.

Lead Organization(s): 
Award Number: 
1908482
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in school science education include engaging students in the practices of science as well as the ideas of science. This project will address this priority by developing a cloud-based platform that enables high school students, teachers, and scientists to conduct original neuroscience research in school classrooms. Before students and teachers initiate their own studies using the system, they will participate in existing research studies by contributing their own data and collaborating with researchers using the online, interactive system. When experienced with the system, students and teachers will become researchers by developing independent investigations and uploading them to the interactive platform. Both student-initiated and scientist-initiated proposals will be submitted to the platform, peer-reviewed by students and scientists, revised, and included in the online experimental bank. In addition to conducting their own studies using the platform, scientists will act as educators and mentors by populating the experiment bank with studies that can serve as models for students and provide science content for the educational resource center. This online system addresses a critical need in science education to involve students more fully and authentically in scientific inquiry where they gain experience in exploring the unknown rather than confirming what is already known.

This early stage design and development study is guided by three goals: 1) Develop an open-science citizen science platform for conducting human brain and behavior research in the classroom, 2) Develop a remote neuroscience Student-Teacher-Scientists (STS) partnership program for high schools, and 3) Evaluate the design, development, and implementation of the program and its impacts on students and tachers. In developing this project, the project team will link two quickly emerging trends, one in science education, and one in the sciences. Consistent with current priorities in science education, the project will engage students and their teachers in authentic, active inquiry where they learn scientific practices by using them to conduct authentic inquiry where a search for knowledge is grounded in finding evidence-based answers to original questions. On the science side, students and their science partners will participate in an open science approach by pre-registering their research and committing to an analysis plan before data are collected. In this project, students will primarily be using reaction time and online systems to do research that includes study of their own brain function. The project research is guided by three research questions. How does an online citizen neuroscience STS platform: a) impact students' understanding of, and abilities to apply neuroscience and experimental design concepts? b) Impact students' interests in, and attitudes toward science, including an awareness of science careers and applications? and c) Affect teachers' attitudes towards neuroscience teaching, and the use of inquiry-based strategies? A design-based research approach will be used to iteratively design a sustainable and scalable inquiry-based neuroscience curriculum with teachers as design partners.

Designing for Science Learning in Schools by Leveraging Participation and the Power of Place through Community and Citizen Science (Collaborative Research: Ballard)

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

Partner Organization(s): 
Award Number: 
1908915
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers. Students will investigate locally-relevant phenomena related to forest health, such as fire management and invasive species. The students will collect and analyze data related to resource management issues and share findings with community scientists and stakeholders. The project will develop and test a reproducible and adaptable place-based instructional model for schools, districts, and counties having underserved rural populations.

This early stage design and development project for students and teachers of grades 3-5 addresses two major goals: 1) Design and implement a science education program focused on local forest management issues to promote community-relevant learning and agency, and 2) Conduct design-based research to identify effective approaches to engaging young students in purposeful data collection and interpretation, and informed interaction with local stakeholders. The study includes 15 comprehensive public schools and charter schools in 12 school districts in a rural region having limited access to the formal and informal science learning opportunities typically available in urban centers. Research activities are guided by two research questions: 1) To what extent and in what ways do students participating in a school-based, community-engaged, place-based, environmental-focused program develop environmental science agency? And 2) Which design variations of the three Central Design Features foster the three science learning outcomes for students? The three Central Design Features are: 1) Collecting place-relevant environmental data, 2) Facilitated meaning-making with collected data embedded within larger data sets, and 3) Community-engaged, place-based projects and interactions. A design-based research approach will be used to determine how the planned design variations impact learning. The project will involve three design cycles of two-years each, with adjustments being based on insights gained during each implementation cycle. Pre- and post-program sureveys will be used to track changes in student environmental science agency (ESA), and field observations, semi-structured interviews with students and teachers, and examination of student work and artifacts will be used to gather data used to answer the research questions.

Designing for Science Learning in Schools by Leveraging Participation and the Power of Place through Community and Citizen Science (Collaborative Research: Henson)

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

Lead Organization(s): 
Award Number: 
1908670
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers. Students will investigate locally-relevant phenomena related to forest health, such as fire management and invasive species. The students will collect and analyze data related to resource management issues and share findings with community scientists and stakeholders. The project will develop and test a reproducible and adaptable place-based instructional model for schools, districts, and counties having underserved rural populations.

This early stage design and development project for students and teachers of grades 3-5 addresses two major goals: 1) Design and implement a science education program focused on local forest management issues to promote community-relevant learning and agency, and 2) Conduct design-based research to identify effective approaches to engaging young students in purposeful data collection and interpretation, and informed interaction with local stakeholders. The study includes 15 comprehensive public schools and charter schools in 12 school districts in a rural region having limited access to the formal and informal science learning opportunities typically available in urban centers. Research activities are guided by two research questions: 1) To what extent and in what ways do students participating in a school-based, community-engaged, place-based, environmental-focused program develop environmental science agency? And 2) Which design variations of the three Central Design Features foster the three science learning outcomes for students? The three Central Design Features are: 1) Collecting place-relevant environmental data, 2) Facilitated meaning-making with collected data embedded within larger data sets, and 3) Community-engaged, place-based projects and interactions. A design-based research approach will be used to determine how the planned design variations impact learning. The project will involve three design cycles of two-years each, with adjustments being based on insights gained during each implementation cycle. Pre- and post-program sureveys will be used to track changes in student environmental science agency (ESA), and field observations, semi-structured interviews with students and teachers, and examination of student work and artifacts will be used to gather data used to answer the research questions.

Pages

Subscribe to Qualitative