Experimental

Supporting Elementary Teacher Learning for Effective School-Based Citizen Science (TL4CS)

This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.

Lead Organization(s): 
Award Number: 
2009212
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Citizen science involves individuals, who are not professional scientists, in authentic scientific research, typically in collaboration with professional scientists. When implemented well in elementary schools, citizen science projects immerse students in science content and engage them with scientific practices. These projects can also create opportunities for students to connect with their local natural surroundings, which is needed, as some research has suggested that children are becoming increasingly detached from nature. The classroom teacher plays a critical role in ensuring that school-based citizen science projects are implemented in a way that maximizes the benefits. However, these projects typically do not include substantial guidance for teachers who want to implement the projects for instructional purposes. This project will develop two forms of support for teachers: (1) guidance embedded in citizen science project materials and (2) teacher professional development. It will develop materials and professional development experiences to support teacher learning for 80 5th grade teachers impacting students in 40 diverse elementary schools.

The overarching goal of this project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making. Specifically, the study is designed to address the following research questions: (1) What kinds of support foster teacher learning for enacting effective school-based citizen science? (2) How do supports for teacher learning shape the way teachers enact school-based citizen science? and (3) What is the potential of school-based citizen science for positively influencing student learning and student attitudes toward nature and science? Data collected during project implementation will include teacher surveys, student surveys and assessments, and case study protocols.

How Deep Structural Modeling Supports Learning with Big Ideas in Biology (Collaborative Research: Capps)

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010223
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. This need is forcefully advanced by policy leaders including the National Research Council and the College Board. They point out that learning is more effective when students organize and link information within a consistent knowledge framework, which is what big ideas should provide. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology. In DSM, students learn a big idea as the underlying, or "deep" structure of a set of examples that contain the structure, but with varying outward details. As learners begin to apprehend the deep structure (i.e., the big idea) within the examples, they use the tools and procedures of scientific modeling to express and develop it. According to theories of learning that undergird DSM, the result of this process should be a big idea that is flexible, meaningful, and easy to express, thus providing an ideal framework for making sense of new information learners encounter (i.e., learning with the big idea). To the extent that this explanation is born out in rigorous research tests and within authentic curriculum materials, it contributes important knowledge about how teaching and learning can be organized around big ideas, and not only for deep structural modeling but for other instructional approaches as well.

This project has twin research and prototype development components. Both are taking place in the context of high school biology, in nine classrooms across three districts, supporting up to 610 students. The work focuses on three design features of DSM: (1) embedding model source materials with intuitive, mechanistic ideas; (2) supporting learners to abstract those ideas as a deep structure shared by a set of sources; and (3) representing this deep structure efficiently within the model. In combination, these features support students to understand an abstract, intuitively rich, and efficient knowledge structure that they subsequently use as a framework to interpret, organize, and link disciplinary content. A series of five research studies build on one another to develop knowledge about whether and how the design features bring about these anticipated effects. Earlier studies in the sequence are small-scale classroom experiments randomly assigning students to either deep structural modeling or to parallel, non modeling controls. Measures discriminate for the anticipated effects during learning and on posttests. Later studies use qualitative methods to carefully trace the anticipated effects over time and across topics. As a group, these studies are contributing generalized knowledge of how learners can effectively abstract and represent big ideas and how these ideas can be leveraged as frameworks for learning content with understanding. Two research-tested biology curriculum prototypes are being developed as the studies evolve: a quarter-year DSM biology curriculum centered on energy; and an eighth-year DSM unit centered on natural selection.

How Deep Structural Modeling Supports Learning with Big Ideas in Biology (Collaborative Research: Shemwell)

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010334
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. This need is forcefully advanced by policy leaders including the National Research Council and the College Board. They point out that learning is more effective when students organize and link information within a consistent knowledge framework, which is what big ideas should provide. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology. In DSM, students learn a big idea as the underlying, or "deep" structure of a set of examples that contain the structure, but with varying outward details. As learners begin to apprehend the deep structure (i.e., the big idea) within the examples, they use the tools and procedures of scientific modeling to express and develop it. According to theories of learning that undergird DSM, the result of this process should be a big idea that is flexible, meaningful, and easy to express, thus providing an ideal framework for making sense of new information learners encounter (i.e., learning with the big idea). To the extent that this explanation is born out in rigorous research tests and within authentic curriculum materials, it contributes important knowledge about how teaching and learning can be organized around big ideas, and not only for deep structural modeling but for other instructional approaches as well.

This project has twin research and prototype development components. Both are taking place in the context of high school biology, in nine classrooms across three districts, supporting up to 610 students. The work focuses on three design features of DSM: (1) embedding model source materials with intuitive, mechanistic ideas; (2) supporting learners to abstract those ideas as a deep structure shared by a set of sources; and (3) representing this deep structure efficiently within the model. In combination, these features support students to understand an abstract, intuitively rich, and efficient knowledge structure that they subsequently use as a framework to interpret, organize, and link disciplinary content. A series of five research studies build on one another to develop knowledge about whether and how the design features bring about these anticipated effects. Earlier studies in the sequence are small-scale classroom experiments randomly assigning students to either deep structural modeling or to parallel, non modeling controls. Measures discriminate for the anticipated effects during learning and on posttests. Later studies use qualitative methods to carefully trace the anticipated effects over time and across topics. As a group, these studies are contributing generalized knowledge of how learners can effectively abstract and represent big ideas and how these ideas can be leveraged as frameworks for learning content with understanding. Two research-tested biology curriculum prototypes are being developed as the studies evolve: a quarter-year DSM biology curriculum centered on energy; and an eighth-year DSM unit centered on natural selection.

Paving the Way for Fractions: Identifying Foundational Concepts in First Grade (Collaborative Research: Newcombe)

The goal of this project is to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes, and to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2000424
Funding Period: 
Mon, 06/01/2020 to Fri, 05/31/2024
Full Description: 

Although fractions represent a crucial topic in early childhood education, many students develop only a tenuous grasp of fraction concepts, even after several years of fraction instruction that is aligned with current standards. The goal of this project, led by a team of researchers at the University of Delaware and Temple University, is to answer important questions about the informal understandings of fractions young children have before they come to school and what their relations are to fraction learning in more formal instructional settings. Proficiency with fractions dramatically increases the likelihood of students succeeding in math, which in turn increases participation in the STEM workforce. Importantly, large individual differences in fraction understandings are apparent at the start of fractions instruction in the intermediate grades. Early fraction misunderstandings cascade into more severe math weaknesses in later grades, especially when instruction may shift abruptly from whole numbers to fractions. There is a critical need to understand the roots of individual differences that arise before formal instruction takes place. Young children possess important informal fraction understandings before they come to school, but the range of these abilities and their role in formal fraction learning and development is not well understood. The goal of this project is: a) to investigate the extent to which individual differences in informal fraction-related knowledge in first-grade children are associated with short- and longer-term fractions and math outcomes; and b) to see whether there is a causal link between level of informal fraction-related knowledge and the ability to profit from fractions instruction that directly builds on this knowledge. The findings from the project hold promise for informing early childhood educators how fractions can be incorporated in the first-grade curriculum in new and meaningful ways. Though the findings should be beneficial to all students, the project will specifically target members of groups underrepresented in STEM fields, including ethnic and racial minority and low-income students.

The project design includes both an observational study and an experimental study. The observational study will: (1) document individual differences in informal fraction-related knowledge in first grade; (2) determine concurrent relations between this informal knowledge and general cognitive and whole number competencies; and (3) examine whether informal fraction-related knowledge at the beginning of first grade uniquely predicts math outcomes at the end. The experimental study will explore the extent to which first graders' informal and formal fraction concepts can be affected by training. The researchers will test whether training on the number line, which is continuous and closely aligned with the mental representation of the magnitude of all real numbers, will help students capitalize on their informal fraction understandings of proportionality, scaling, and equal sharing as well as their experience with integers to learn key fraction concepts. Together, the synergistic studies will pinpoint the role informal fraction knowledge in learning key fraction concepts. All data will be collected in Delaware schools serving socioeconomically and ethnically diverse populations of students. Primary measures include assessments of informal fraction knowledge (proportional reasoning, spatial scaling, equal sharing), executive functioning, vocabulary, whole number knowledge, whole number/fraction number line estimation, formal fraction knowledge, and broad mathematics achievement (calculation, fluency, applied problems).

Leveraging Simulations in Preservice Preparation to Improve Mathematics Teaching for Students with Disabilities (Collaborative Research: Cohen)

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2009939
Funding Period: 
Fri, 05/01/2020 to Tue, 04/30/2024
Full Description: 

The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.

The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates? practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.

Leveraging Simulations in Preservice Preparation to Improve Mathematics Teaching for Students with Disabilities (Collaborative Research: Jones)

This project aims to support the mathematics learning of students with disabilities through the development and use of mixed reality simulations for elementary mathematics teacher preparation. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010298
Funding Period: 
Fri, 05/01/2020 to Tue, 04/30/2024
Full Description: 

The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.

The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates? practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.

Improving the Teaching of Genetics in High School to Avoid Instilling Misconceptions about Gender Differences (Collaborative Research: Riegle-Crumb)

This project will study the aspects of genetics instruction that affect students' beliefs in neurogenetic essentialism, which is implicated in lowering girls' sense of STEM abilities, feeling of belonging in STEM classes, and interest in pursuing further education in STEM fields. The goal of the project is to answer important questions about how to teach genetics at the high school level in a manner that is scientifically accurate but does not have these detrimental side effects.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1956119
Funding Period: 
Wed, 07/01/2020 to Mon, 06/30/2025
Full Description: 

Recent research suggests that learning about genetics during high school biology can lead to a belief that inherent differences in the genes and brains of men and women are the main causes of gender differences in behavior and intellectual abilities (a belief known as neurogenetic essentialism). This belief is implicated in lowering girls' sense of their own STEM abilities, their feelings of belonging in STEM classes, and their interest in pursuing further education in STEM fields. The goal of this project, led by a team of researchers at Biological Sciences Curriculum Study, the University of Texas, Austin, and New York University is to answer important questions about how to teach genetics at the high school level in a manner that is scientifically accurate, but does not have these detrimental side effects. Specifically, this new line of experimental research will identify and revise the content in common genetics instruction that promotes the belief in neurogenetic essentialism. The proposed experiments will also explore how the beliefs of peers and teachers contribute to changes in such beliefs in students. This work has further implications for how the topic of differences between men and women is addressed during high school biology education. Furthermore, the research findings will advance theory on factors that contribute to gender disparities in STEM attitudes and aspirations.

Building on preliminary evidence, this project aims to accomplish four key goals. First, the project will study which specific aspects of genetics instruction affect students' beliefs in neurogenetic essentialism. Second, the project will identify the cognitive mechanisms through which these effects occur. Third, the project will uncover the downstream effects of revised genetics instructional materials on a broad range of motivational variables relevant to STEM pursuit, such as implicit person theories, sense of belonging in STEM, and interest in this domain. Fourth, the project will explore the contextual factors (e.g., teacher and peer beliefs) that may moderate or mediate how students respond to the instructional materials. The research team will develop and iteratively refine genetics educational materialsthat teach about genetic, neurological, and behavioral variation within and between sexes, as well as the social causes of such differences. The research team will then test the effectiveness of these revised materials through two large-scale randomized control trials, one targeting students directly and one targeting students' learning via their teachers. The results of this project will produce generalizable knowledge regarding the cognitive, sociological, and educational factors that contribute to STEM gender disparities.

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.

Lead Organization(s): 
Award Number: 
1908889
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

U.S. proficiency in mathematics continues to be low and early math performance is a powerful predictor of long-term academic success and employability. However, relatively few early childhood degree programs have any curriculum requirements focused on key mathematics topics. Thus, teacher professional development programs offer a viable and promising method for supporting and improving teachers' instructional approaches to mathematics and thus, improving student math outcomes. The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction. The LT2 program modules uniquely include the mathematical learning goal, the developmental progression, and relevant instructional activities. All three aspects are critical for high-quality and coherent mathematics instruction in the early grades.

This project will address the following research questions: 1) What are the medium-range effects of LT2 on student achievement and the achievement gap? 2) What are the short- and long-term effects of LT2 on teacher instructional approach, beliefs, and quality? and 3) How cost effective is the LT2 intervention relative to the original Building Blocks intervention? To address the research questions, this project will conduct a multisite cluster randomized experimental design, with 90 schools randomly assigned within school districts to either experimental or control groups. Outcome measures for the approximately 250 kindergarten classrooms across these districts will include the Research-based Elementary Math Assessment, observations of instructional quality, a questionnaire focused on teacher beliefs and practices, in addition to school level administrative data. Data will be analyzed using multi-level regression models to determine the effect of the Learning Trajectories intervention on student learning.

Young Mathematicians: Expanding an Innovative and Promising Model Across Learning Environments to Promote Preschoolers' Mathematics Knowledge

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.

Award Number: 
1907904
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

Far too many children in the U.S. start kindergarten lacking the foundational early numeracy skills needed for academic success. This project contributes to the goal of enhancing the learning and teaching of early mathematics in order to build a STEM-capable workforce and STEM-literate citizenry, which are both crucial to our nation's prosperity and competitiveness. Preparation for the STEM-workforce must start early, as young children's mathematics development undergirds cognitive development, building brain architecture, and supporting problem-solving, puzzling, and persevering, while strongly impacting and predicting future success in school. Preschool children from low socio-economic backgrounds are particularly at risk, as their mathematics knowledge may be up to a full year behind their middle-income peers. Despite agreements about the importance of mathematics-rich interactions for young children's learning and development, most early education teachers and families are not trained in evidence-based methods that can facilitate these experiences, making preschool learning environments (such as school and home) a critical target for intervention. The benefit of this project is that it will develop a robust model for a school-based intervention in early mathematics instruction. The model has the potential to broaden participation by providing instructional materials that support adult-child interaction and engagement in mathematics, explicitly promoting school-home connections in mathematics, and addressing educators' and families' attitudes toward mathematics while promoting children's mathematical knowledge and narrowing opportunity gaps.

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention. To achieve this goal, qualitative and quantitative research methodologies will be employed, integrating data from multiple sources and stakeholders. Specifically, the project will: (1) engage in a materials design and development process that includes an iterative cycle of design, development, and implementation, collaborating with practitioners and families in real-world settings; (2) collect and analyze data from at least 40 Head Start classrooms, implementing the mathematics materials to ensure that the classroom and family mathematics materials and resources are engaging, usable, and comprehensible to preschoolers, teachers, and families; and (3) conduct an experimental study that will measure the impact of the intervention on preschool children's mathematics learning. The researchers will analyze collected data using hierarchical linear regression modeling to account for the clustering of children within classrooms. The researchers will also use a series of regression models and multi-level models to determine whether the intervention promotes student outcomes and whether it supports teachers' and families' positive attitudes toward mathematics.

Improving Grades 6-8 Students' Mathematics Achievement in Modeling and Problem Solving through Effective Sequencing of Instructional Practices

This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.

Project Email: 
Lead Organization(s): 
Award Number: 
1907840
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Project Evaluator: 
Kurt Steuck
Full Description: 

The Researching Order of Teaching project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The first strategy, Explicit Attention to Concepts (EAC), is a set of practices that draw students' attention specifically to mathematical concepts in ways that extend beyond memorization, procedures, or application of skills. This strategy may include teachers asking students to connect multiple mathematical representations, compare solution strategies, discuss mathematical reasoning underlying procedures, or to identify a main mathematical idea in a lesson and how it fits into the broader mathematical landscape. The second strategy, Student Opportunities to Struggle (SOS), entails providing students with time and space to make sense of graspable content, overcoming confusion points, stimulating personal sense-making, building perseverance, and promoting openness to challenge. This strategy may include teachers assigning problems with multiple solution strategies, asking students to look for patterns and make conjectures, encouraging and promoting discourse around confusing or challenging ideas, and asking students for extended mathematical responses. This project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning. This study builds on previous work that had identified an interaction between the EAC and SOS instructional strategies, and associated teacher reporting of stronger use of the practices with higher student mathematics achievement.

The project will have four key design features. First, the project will adopt and extend the research-based EAC/SOS conceptual framework, and explicitly responds to the call for further research on the interactions. Second, the project will focus on the mathematical areas of modeling and problem solving, two complex and critical competencies for all students in the middle grades. Third, the project will position teachers as collaborators in the research with needed expertise. Finally, the project will make use of research methods from crossover clinical trials to implementation in classrooms. The project aims to identify the affordances and constraints of the EAC/SOS framework in the design and development of instructional practices, to identify student- and teacher-level factors associated with changes in modeling and problem solving outcomes, to analyze teachers' implementations EAC and SOS in teaching modeling and problem solving and to associate those implementation factors with student achievement changes, and to determine whether the ordering of these two strategies correlates with differences in achievement. The project will collect classroom observation data and make use of existing tools to obtain reliable and valid ratings of the EAC and SOS strategies in action.The design of the study features a randomized 2 x 2 cluster crossover trial with a sample of teachers for 80% power. The project builds on existing state infrastructure and relationships with a wide array of school districts in the context of professional development, and aims to create a formal Teacher-Researcher Alliance for Investigating Learning as a part of the project work.

Pages

Subscribe to Experimental