Experimental

Learning Trajectories as a Complete Early Mathematics Intervention: Achieving Efficacies of Economies at Scale

The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction and includes the mathematical learning goal, the developmental progression, and relevant instructional activities.

Lead Organization(s): 
Award Number: 
1908889
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

U.S. proficiency in mathematics continues to be low and early math performance is a powerful predictor of long-term academic success and employability. However, relatively few early childhood degree programs have any curriculum requirements focused on key mathematics topics. Thus, teacher professional development programs offer a viable and promising method for supporting and improving teachers' instructional approaches to mathematics and thus, improving student math outcomes. The purpose of this project is to test the efficacy of the Learning and Teaching with Learning Trajectories (LT2) program with the goal of improving mathematics teaching and thereby increasing young students' math learning. LT2 is a professional development tool and a curriculum resource intended for teachers to be used to support early math instruction. The LT2 program modules uniquely include the mathematical learning goal, the developmental progression, and relevant instructional activities. All three aspects are critical for high-quality and coherent mathematics instruction in the early grades.

This project will address the following research questions: 1) What are the medium-range effects of LT2 on student achievement and the achievement gap? 2) What are the short- and long-term effects of LT2 on teacher instructional approach, beliefs, and quality? and 3) How cost effective is the LT2 intervention relative to the original Building Blocks intervention? To address the research questions, this project will conduct a multisite cluster randomized experimental design, with 90 schools randomly assigned within school districts to either experimental or control groups. Outcome measures for the approximately 250 kindergarten classrooms across these districts will include the Research-based Elementary Math Assessment, observations of instructional quality, a questionnaire focused on teacher beliefs and practices, in addition to school level administrative data. Data will be analyzed using multi-level regression models to determine the effect of the Learning Trajectories intervention on student learning.

Young Mathematicians: Expanding an Innovative and Promising Model Across Learning Environments to Promote Preschoolers' Mathematics Knowledge

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.

Award Number: 
1907904
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

Far too many children in the U.S. start kindergarten lacking the foundational early numeracy skills needed for academic success. This project contributes to the goal of enhancing the learning and teaching of early mathematics in order to build a STEM-capable workforce and STEM-literate citizenry, which are both crucial to our nation's prosperity and competitiveness. Preparation for the STEM-workforce must start early, as young children's mathematics development undergirds cognitive development, building brain architecture, and supporting problem-solving, puzzling, and persevering, while strongly impacting and predicting future success in school. Preschool children from low socio-economic backgrounds are particularly at risk, as their mathematics knowledge may be up to a full year behind their middle-income peers. Despite agreements about the importance of mathematics-rich interactions for young children's learning and development, most early education teachers and families are not trained in evidence-based methods that can facilitate these experiences, making preschool learning environments (such as school and home) a critical target for intervention. The benefit of this project is that it will develop a robust model for a school-based intervention in early mathematics instruction. The model has the potential to broaden participation by providing instructional materials that support adult-child interaction and engagement in mathematics, explicitly promoting school-home connections in mathematics, and addressing educators' and families' attitudes toward mathematics while promoting children's mathematical knowledge and narrowing opportunity gaps.

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention. To achieve this goal, qualitative and quantitative research methodologies will be employed, integrating data from multiple sources and stakeholders. Specifically, the project will: (1) engage in a materials design and development process that includes an iterative cycle of design, development, and implementation, collaborating with practitioners and families in real-world settings; (2) collect and analyze data from at least 40 Head Start classrooms, implementing the mathematics materials to ensure that the classroom and family mathematics materials and resources are engaging, usable, and comprehensible to preschoolers, teachers, and families; and (3) conduct an experimental study that will measure the impact of the intervention on preschool children's mathematics learning. The researchers will analyze collected data using hierarchical linear regression modeling to account for the clustering of children within classrooms. The researchers will also use a series of regression models and multi-level models to determine whether the intervention promotes student outcomes and whether it supports teachers' and families' positive attitudes toward mathematics.

Improving Grades 6-8 Students' Mathematics Achievement in Modeling and Problem Solving through Effective Sequencing of Instructional Practices

This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.

Project Email: 
Lead Organization(s): 
Award Number: 
1907840
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The Researching Order of Teaching project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The first strategy, Explicit Attention to Concepts (EAC), is a set of practices that draw students' attention specifically to mathematical concepts in ways that extend beyond memorization, procedures, or application of skills. This strategy may include teachers asking students to connect multiple mathematical representations, compare solution strategies, discuss mathematical reasoning underlying procedures, or to identify a main mathematical idea in a lesson and how it fits into the broader mathematical landscape. The second strategy, Student Opportunities to Struggle (SOS), entails providing students with time and space to make sense of graspable content, overcoming confusion points, stimulating personal sense-making, building perseverance, and promoting openness to challenge. This strategy may include teachers assigning problems with multiple solution strategies, asking students to look for patterns and make conjectures, encouraging and promoting discourse around confusing or challenging ideas, and asking students for extended mathematical responses. This project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning. This study builds on previous work that had identified an interaction between the EAC and SOS instructional strategies, and associated teacher reporting of stronger use of the practices with higher student mathematics achievement.

The project will have four key design features. First, the project will adopt and extend the research-based EAC/SOS conceptual framework, and explicitly responds to the call for further research on the interactions. Second, the project will focus on the mathematical areas of modeling and problem solving, two complex and critical competencies for all students in the middle grades. Third, the project will position teachers as collaborators in the research with needed expertise. Finally, the project will make use of research methods from crossover clinical trials to implementation in classrooms. The project aims to identify the affordances and constraints of the EAC/SOS framework in the design and development of instructional practices, to identify student- and teacher-level factors associated with changes in modeling and problem solving outcomes, to analyze teachers' implementations EAC and SOS in teaching modeling and problem solving and to associate those implementation factors with student achievement changes, and to determine whether the ordering of these two strategies correlates with differences in achievement. The project will collect classroom observation data and make use of existing tools to obtain reliable and valid ratings of the EAC and SOS strategies in action.The design of the study features a randomized 2 x 2 cluster crossover trial with a sample of teachers for 80% power. The project builds on existing state infrastructure and relationships with a wide array of school districts in the context of professional development, and aims to create a formal Teacher-Researcher Alliance for Investigating Learning as a part of the project work.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Building Middle School Students' Understanding of Heredity and Evolution

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

Lead Organization(s): 
Award Number: 
1814194
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules. The planned research will also examine whether student understanding of evolution depends on the length and time of exposure to learning about heredity prior to learning about evolution.

This Early Stage Design and Development project will develop two new 3-week middle school curriculum units, with one focusing on heredity and the other focusing on evolution. The units will include embedded formative and summative assessment measures and online teacher support materials. These units will be developed as part of a curriculum learning progression that will eventually span the elementary grades through high school. This curriculum learning progression will integrate heredity, evolution, data analysis, construction of scientific explanations, evidence-based argumentation, pattern recognition, and inferring cause and effect relationships. To inform development and iterative revisions of the units, the project will conduct nation-wide beta and pilot tests, selecting schools with broad ranges of student demographics and geographical locations. The project will include three rounds of testing and revision of both the student curriculum and teacher materials. The project will also investigate student understanding of evolution in terms of how their understanding is impacted by conceptual understanding of heredity. The research to be conducted by this project is organized around three broad research questions: (a) In what ways can two curriculum units be designed to incorporate the three dimensions of science learning and educative teacher supports to guide students' conceptual understanding of heredity and evolution? (b) To what extent does student understanding of evolution depend on the length and timing of heredity lessons that preceded an evolution unit? And (c) In what ways do students learn heredity and evolution?

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Riordan)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Lead Organization(s): 
Award Number: 
1812660
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Engaging High School Students in Computer Science with Co-Creative Learning Companions (Collaborative Research: Magerko)

This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages learners in making music with JavaScript or Python code.

Award Number: 
1814083
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 
This research investigates how state-of-the-art creative and pedagogical agents can improve students' learning, attitudes, and engagement with computer science. The project will be conducted in high school classrooms using EarSketch, an online computer science learning environments that engages over 160,000 learners worldwide in making music with JavaScript or Python code. The researchers will build the first co-creative learning companion, Cai, that will scaffold students with pedagogical strategies that include making use of learner code to illustrate abstraction and modularity, suggesting new code to scaffold new concepts, providing help and hints, and explaining its decisions. This work will directly address the national need to develop computing literacy as a core STEM skill.
 
The proposed work brings together an experienced interdisciplinary team to investigate the hypothesis that adding a co-creative learning companion to an expressive computer science learning environment will improve students' computer science learning (as measured by code sophistication and concept knowledge), positive attitudes towards computing (self-efficacy and motivation), and engagement (focused attention and involvement during learning). The iterative design and development of the co-creative learning companion will be based on studies of human collaboration in EarSketch classrooms, the findings in the co-creative literature and virtual agents research, and the researchers' observations of EarSketch use in classrooms. This work will address the following research questions: 1) What are the foundational pedagogical moves that a co-creative learning companion for expressive programming should perform?; 2) What educational strategies for a co-creative learning companion most effectively scaffold learning, favorable attitudes toward computing, and engagement?; and 3) In what ways does a co-creative learning companion in EarSketch increase computer science learning, engagement, and positive attitudes toward computer science when deployed within the sociocultural context of a high school classroom? The proposed research has the potential to transform our understanding of how to support student learning in and broaden participation through expressive computing environments.

Testing the Efficacy of the Strategic Observation and Reflection (SOAR) for Math Professional Learning Program

The purpose of this project is to develop, implement and test a professional development program, SOAR for Math, to build capacity for mentors and teachers to improve English learner's academic language development and mathematical content understanding.

Award Number: 
1814356
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 
Professional development is an important way for teachers who are currently in classrooms to learn about new best practices in mathematics teaching and learning and improve their practice. Little is known about what types of professional development (PD) and teacher mentoring programs support teachers' improved practices and ultimately lead to gains in student learning. The purpose of this project is to develop, implement and test a professional development program, SOAR for Math, to build capacity for mentors and teachers to improve English learner's academic language development and mathematical content understanding.
 
This study will test the efficacy of the Strategic Observation and Reflection (SOAR) for Math professional development program. The mixed methods study is designed to answer several research questions: (1) What is the impact of teachers' participation in SOAR for Math on student achievement outcomes for current and recent grade 3-6 English learner students in treatment schools? (2) What is the impact of SOAR for Math on treatment school teachers' knowledge and practices related to their academic language and literacy development instruction for current and recent English learner students, specifically scores on the Knowledge/Use Scale? (3) What is the impact of SOAR for Math on treatment mentors' knowledge and practices related to their academic language and math instruction? A randomized controlled trial will be conducted in 80 elementary schools in one California school district. Schools serving third- through sixth-grade general education students will be eligible to participate. The research team will randomly assign 40 schools to provide SOAR for Math training to mentor teachers and 40 schools to comprise a control group receiving business-as-usual professional development. Two mentors per school will participate in the study. Measures will include state math scores and a variety of observations and questionnaires to assess fidelity of implementation. Data will be analyzed using hierarchical linear modeling to account for the nested data structure.

Development and Validation of a Mobile, Web-based Coaching Tool to Improve PreK Classroom Practices to Enhance Learning

This project will promote pre-K teachers' use of specific teaching strategies that have been shown to enhance young children's learning and social skills. To enhance teachers' use of these practices, the project will develop a new practitioner-friendly version of the Classroom Quality Real-time Empirically-based Feedback (CQ-REF) tool for instructional coaches who work with pre-K teachers.

Lead Organization(s): 
Award Number: 
1813008
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

Children from low-income families often enter kindergarten academically behind their more economically affluent peers. Advancing pre-kindergarten (pre-K) teachers' ability to provide all students with high-quality early math learning experiences has potential to minimize this gap in school readiness. This project will promote pre-K teachers' use of specific teaching strategies, such as spending more time on math content and listening to children during instructional activities, that have been shown to enhance young children's learning and social skills. To enhance teachers' use of these practices, the project takes a novel approach--a mobile website that helps instructional coaches who work with pre-K teachers. The Classroom Quality Real-time Empirically-based Feedback tool (CQ-REF) will guide coaches' ability to observe specific teacher practices in their classrooms and then provide feedback to help teachers evaluate their practices and set goals for improvement.  Practically, the CQ-REF addresses the need for accessible, real-time feedback on high quality pre-K classroom teaching.

This project focuses on developing a new practitioner-friendly version of the CQ-REF, originally designed as a research tool for evaluating the quality of classroom teaching, for use by coaches and teachers. At the beginning of the four-year project, the team will collect examples of high-quality classroom teaching and coaching strategies. These will be used to create a library of video and other materials that teachers and coaches can use to establish a shared definition of what effective pre-K teaching looks like. In year three of the project, the team will pilot the CQ-REF with a diverse range of pre-K teachers and their coaches to determine the tool's usability and relevance. In this validation study coaches will be randomly assigned to either use the CQ-REF tool or coach in their usual manner. After one year, the CQ-REF's impact on teacher practices and student outcomes will be assessed. Outcomes of interest include teacher and student classroom behavior and children's executive function and ability in mathematics, literacy and science. Concurrently, an external evaluation team will examine how the coaching is being conducted and used, and participants' impressions of the coaching process. In the fourth and final year, the team will focus on refining the tool based on results from prior work and on disseminating the findings to research and practitioner audiences.

Extending and Investigating the Impact of the High School Model-based Educational Resource (Collaborative Research: Wilson)

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. The project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. It will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence.

Lead Organization(s): 
Award Number: 
1813538
Funding Period: 
Wed, 08/01/2018 to Sun, 07/31/2022
Full Description: 

This project builds on a line of work that has developed and studied the Model Based Educational Resource (MBER), a year-long curriculum for high school biology. In classrooms using MBER, modeling serves as an anchoring practice that keeps the inquiry tied to the goal of making sense of the world, helping teachers to engage their students in a range of cognitive and social activities that lead to deep understanding of scientific ideas. This project will generate rigorous causal evidence on how this approach to biology teaching and learning can support student learning, and foundational information on how to support high school teachers in improving their teaching. This funding will also provide resources to expand and update MBER to reflect the changing high school science landscape by integrating Earth Science standards into the year long sequence. The study will address the general research question: What is the impact of the Model Based Educational Resource (MBER) on high school students' science achievement, and what factors influence that impact? In addition to generating important research findings, the materials revised and studied in this project will be open-source and freely available to teachers and schools.

This study addresses a significant gap in the research on next generation curriculum materials. While there is emerging agreement about the importance of instructional materials in supporting teachers in effectively engaging students in the practices of science, there is very little empirical evidence to support such claims. The goal of this project is to study the impact of the MBER program through a cluster randomized trial and expand the promise of efficacy and feasibility established in previous work. This study will be able to make causal claims by using an experimental design in which 32 high school teachers serve as their own controls, and by using multi-level modeling in the analysis. This study will advance the field's knowledge about the impact of innovative materials on student learning, measured by both project-level assessments and the state science test. Exploratory research questions will examine a) how using the MBER program develops teachers' vision of the Next Generation Science Standards, b) how student learning is mediated by the fidelity of implementation of the materials, c) how teachers interact with materials designed to be modified for their classroom context, and d) to what extent the MBER materials provide equitable opportunities to learn and close achievement gaps.

Pages

Subscribe to Experimental