Systems Reform

Human Subjects Protection in the Digital Age

This project will convene a panel of experts in government, industry and academia to raise and discuss emerging concerns for human subjects' protections in the digital age. This project will support scholarly discussion on human subjects' protections in the digital age with implications for funding agencies, schools, and those who work with human subjects in a variety of environments.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1419055
Funding Period: 
Sat, 03/15/2014 to Sat, 02/28/2015
Full Description: 

This project will convene a panel of experts in government, industry and academia to raise and discuss emerging concerns for human subjects' protections in the digital age. Learners taking part in formal education, informal education, and out-of-school settings are subject to a ubiquitous tracking of their activities: locally, using the internet of things (e.g., smart phones, smart sensors and other cyberphysical devices), and globally, via the internet. This tracking may include data tracked passively (e.g., online purchases) or data made available on social media websites by the learners themselves. In addition, the use of the longitudinal data collected by local educational agencies for research is an increasingly political concern. Decisions about the use of these data by university researchers and scholars are typically made by Institutional Review Board (IRB) offices. New guidelines on IRB practices are being considered by a number of bodies, including the National Research Council, which issued a report in early 2014.

This project will support scholarly discussion on human subjects' protections in the digital age with implications for funding agencies, schools, and those who work with human subjects in a variety of environments. The issues discussed are of national import, including, but not limited to FERPA privacy concerns. To the extent that US researchers work with data from other countries (e.g., via massive open online courses or MOOCs), the impact of the reports that will be produced as part of this conference for education research is potentially global.

Cross-National Comparison of School and District Supports for High-Quality Mathematics Instruction in the US and China

This RAPID project is a cross-national comparative study of U.S. and Chinese instructional support systems, building from earlier data about mathematics teaching and learning in large urban school districts of both the United States and the People's Republic of China. The study uses quantitative methods to compare and contrast the effectiveness of supports (e.g., professional development, teacher networks, school leadership) in improving teachers' instructional practices and student achievement using comparable instrumentation.

Lead Organization(s): 
Award Number: 
1321828
Funding Period: 
Sun, 09/15/2013 to Sun, 08/31/2014
Full Description: 

Since the publication of the result that students from Shanghai, China, outperformed students from all other participating countries on the 2009 Programme for International Student Assessment (PISA) in mathematics, researchers have sought to understand why Chinese mathematics education appears to be both more successful at boosting student learning and more equitably distributed. This RAPID project is a cross-national comparative study of U.S. and Chinese instructional support systems, building from earlier data about mathematics teaching and learning in large urban school districts of both the United States and the People's Republic of China. The work is being conducted by researchers from Vanderbilt University, Virginia Polytechnic Institute and State University and Beijing Normal University. The study uses quantitative methods to compare and contrast the effectiveness of supports (e.g., professional development, teacher networks, school leadership) in improving teachers' instructional practices and student achievement using comparable instrumentation.

The study contributes to research and policy in several ways. First, it is helping to identify supports that have been particularly effective in improving mathematics teaching and learning in China. This should inform current theories about how to best support mathematics education in the United States. Second, the cross-nationally validated instruments used to collect the data can be used by other researchers investigating curricular reform implementation cross-nationally. The findings of this study are especially relevant to district leaders as they develop support and accountability systems to effectively implement the content and practice standards of the Common Core State Standards for Mathematics.

This award is co-funded by NSF's International Science and Engineering Section, Office of International and Integrative Activities.

An Innovative Approach to Earth Science Teacher Preparation: Uniting Science, Informal Science Education, and Schools to Raise Student Achievement

The American Museum of Natural History in New York City, in partnership with New York University, and in collaboration with five high-needs schools, is developing, implementing, and researching a five-year pilot Master of Arts in Teaching (MAT) program in Earth Science. The program is delivered by the Museum's scientific and education teams and its evaluation covers aspects of the program from recruitment to first year of teaching.

Project Email: 
Award Number: 
1119444
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
David Silvernail, Center for Education and Policy, University of Southern Maine
Full Description: 

The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”

Multiple Instrumental Case Studies of Inclusive STEM-Focused High Schools: Opportunity Structures for Preparation and Inspiration (OSPrl)

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.

Lead Organization(s): 
Award Number: 
1118851
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. In contrast to highly selective STEM-focused schools that target students who are already identified as gifted and talented in STEM, inclusive STEM-focused high schools aim to develop new sources of STEM talent, particularly among underrepresented minority students, to improve workforce development and prepare STEM professionals. A new NRC report, Successful K-12 STEM Education (2011), identifies areas in which research on STEM-focused schools is most needed. The NRC report points out the importance of providing opportunities for groups that are underrepresented in the sciences, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. This project responds specifically to the call for research in the NRC report and provides systematic data to define and clarify the nature of such schools. 

The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study. The first phase of the study is focusing on 12 well-established and carefully planned schools with good reputations and strong community and business support, in order to capture the critical components as intended and implemented. Case studies of these high-functioning schools and a cross-case analysis using a set of instruments for gauging STEM design and implementation are contributing toward building a theory of action for such schools that can be applied more generally to STEM education. The second phase of the study involves selecting four school models for further study, focusing on student-level experiences and comparing student outcomes against comprehensive schools in the same district. Research questions being studied include: 1) Is there a core set of likely critical components shared by well-established, promising inclusive STEM-focused high schools? Do other components emerge from the study? 2) How are the critical components implemented in each school? 3) What are the contextual affordances and constraints that influence schools' designs, their implementation, and student outcomes? 4) How do student STEM outcomes in these schools compare with school district and state averages? 5) How do four promising such schools compare with matched comprehensive high schools within their respective school districts, and how are the critical components displayed? 6) From the points of view of students underrepresented in STEM fields, how do education experiences at the schools and their matched counterparts compare? And 7) How do student outcomes compare?

The research uses a multiple instrumental case study design in order to describe and compare similar phenomena. Schools as critical cases are being selected through a nomination process by experts, followed by screening and categorization according to key design dimensions. Data sources include school documents and public database information; a survey, followed by telephone interviews that probe for elaborated information, to provide a systematic overview of the candidate components; on-site visitations to each school provide data on classroom observations at the schools; interviews with students, teachers and administrators in focus groups; and discussions with critical members of the school community that provide unique opportunities to learn such as mentors, business leaders, and members of higher education community that provide outside of school learning experiences. The project is also gathering data on a variety of school-level student outcome indicators, and is tracking the likely STEM course trajectories for students, graduation rates, and college admission rates for students in the inclusive STEM-focused schools, as compared to other schools in the same jurisdiction. Analysis of the first phase of the study aims to develop rich descriptions that showcase characteristics of the schools, using axial and open coding, to determine a theory of action that illustrates interconnections among context, design, implementation, and outcome elements. Analysis of the second phase of the study involves similar processes on four levels: school, student, databases, and a synthesis of the three. Evaluation of the project consists of an internal advisory board and an external advisory board, both of which provide primarily formative feedback on research procedures.

Research findings, as well as case studies, records of instrument and rubric development and use, annual reports, and conference proposals and papers are being provided on a website, in order to provide an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. An effort is also being made to give voice to the experiences of high school students from the four pairs of high schools studied in the second phase of the study. Findings are also being disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations.

School Structure and Science Success: Organization and Leadership Influences on Student Achievement (Collaborative Research: Butler)

This project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Researchers, in collaboration with school districts, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status.

Partner Organization(s): 
Award Number: 
1338512
Funding Period: 
Fri, 02/15/2013 to Sat, 06/30/2018
Full Description: 

The School Organization and Science Achievement (SOSA) Project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Previous school effectiveness studies demonstrate school leadership and social capital influencing student achievement; the SOSA project is unique with its focus on science achievement. Researchers at the University of Connecticut and the University of South Florida St. Petersburg, in collaboration with school districts in their respective states, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status. At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.

The project uses a mixed methods design by combining statistical modeling and qualitative data. Multiple regression analyses highlight those schools populated by fifth graders that have greater or lesser achievement gaps in science. Using social capital theory (i.e., school norms, communication channels, and trustworthiness) comparisons of positive and negative outlier schools will be made via interviews of building principals, classroom teachers and community representatives. The expectation is that schools providing more equitable science experiences to all students will exhibit stronger social capital compared to buildings with disparities in science test scores across demographic categories. These insights will be supplemented by multilevel structural equation modeling to determine the strength of association between various school climate measures (e.g., teacher-to-principal trust, correspondence between teacher and principal perceptions of leadership, and school/community ties) and science achievement as measured by statewide fifth grade science tests. In addition, growth analyses will be used to detect shifts over time and provide insights about the links between policy changes or leadership adjustments, inasmuch as science achievement gaps are affected.

By working with 150 schools in two states, this collaborative research project is designed to generate findings applicable in other school systems. Particularly in settings where science achievement gaps are large, and especially when such gaps vary between schools even when the student populations are similar, the findings from this study will have practical leadership implications. Expertise in this project includes science education, educational leadership, and statistical modeling. This complementary combination increases the depth of the project's efforts along with expanding its potential impacts. Key questions addressed by this project include: to what extent is leadership in science similar to or different from leadership in other subject areas? how do variations in leadership design (e.g., top-down versus distributed leadership) contribute to reductions in science achievement gaps? to what degree can effective leadership mitigate other factors that exacerbate the challenges of providing high quality science learning experiences for every child? Findings will be disseminated via the SOSA Project website, along with leadership development strategies. Deliverables include templates to replicate the study, case studies for professional development, and strategies for supporting the development of science teacher-leaders.

This project was previously funded under award # 1119359.

School Organization and Science Achievement: Organization and Leadership Influences on Equitable Student Performance (Collaborative Research: Settlage)

This project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.

Award Number: 
1119349
Funding Period: 
Fri, 07/01/2011 to Sun, 06/30/2013
Project Evaluator: 
Katherine Paget, Education Development Center, Inc. (EDC)
Full Description: 

The School Organization and Science Achievement (SOSA) Project will document factors explaining variations in science achievement across schools enrolling ethnically and linguistically diverse students. The research question is: what leadership and organizational features at the school level are associated with mitigating science achievement gaps? Previous school effectiveness studies demonstrate school leadership and social capital influencing student achievement; the SOSA project is unique with its focus on science achievement. Researchers at the University of Connecticut and the University of South Florida St. Petersburg, in collaboration with school districts in their respective states, will identify school leadership practices that can be connected with reductions in achievement gaps related to student ethnicity, English fluency, and social status. At the conclusion of the five-year project, the findings will take the form of recommendations about leadership practices and school organization that can be implemented in other school settings.

The project uses a mixed methods design by combining statistical modeling and qualitative data. Multiple regression analyses highlight those schools populated by fifth graders that have greater or lesser achievement gaps in science. Using social capital theory (i.e., school norms, communication channels, and trustworthiness) comparisons of positive and negative outlier schools will be made via interviews of building principals, classroom teachers and community representatives. The expectation is that schools providing more equitable science experiences to all students will exhibit stronger social capital compared to buildings with disparities in science test scores across demographic categories. These insights will be supplemented by multilevel structural equation modeling to determine the strength of association between various school climate measures (e.g., teacher-to-principal trust, correspondence between teacher and principal perceptions of leadership, and school/community ties) and science achievement as measured by statewide fifth grade science tests. In addition, growth analyses will be used to detect shifts over time and provide insights about the links between policy changes or leadership adjustments, inasmuch as science achievement gaps are affected.

By working with 150 schools in two states, this collaborative research project is designed to generate findings applicable in other school systems. Particularly in settings where science achievement gaps are large, and especially when such gaps vary between schools even when the student populations are similar, the findings from this study will have practical leadership implications. Expertise in this project includes science education, educational leadership, and statistical modeling. This complementary combination increases the depth of the project's efforts along with expanding its potential impacts. Key questions addressed by this project include: to what extent is leadership in science similar to or different from leadership in other subject areas? how do variations in leadership design (e.g., top-down versus distributed leadership) contribute to reductions in science achievement gaps? to what degree can effective leadership mitigate other factors that exacerbate the challenges of providing high quality science learning experiences for every child? Findings will be disseminated via the SOSA Project website, along with leadership development strategies. Deliverables include templates to replicate the study, case studies for professional development, and strategies for supporting the development of science teacher-leaders.

Investigating and Supporting the Development of Ambitious and Equitable Mathematics Instruction at Scale

This project is supporting and investigating the implementation of reformed mathematics instruction at the middle school level in two large school districts. The primary goal of the project is to develop an empirically grounded theory of action for implementing reform at school and district levels. The researchers are investigating reform within a coherent system that focuses on leadership and school-based professional development.

 

Lead Organization(s): 
Award Number: 
1119122
Funding Period: 
Mon, 08/15/2011 to Tue, 07/31/2012
Full Description: 

The Development of Ambitious and Equitable Mathematics Instruction project is supporting and investigating the implementation of reformed mathematics instruction at the middle school level in two large school districts. Project researchers are asking: What does it take to support mathematics teachers' development of ambitious and equitable instructional practices on a large scale? The project has built on what was learned in a previous, successful project studying the implementation of a middle school mathematics curriculum. The primary goal of the new project is to develop an empirically grounded theory of action for implementing reform at school and district levels. The researchers are investigating reform within a coherent system that focuses on leadership and school-based professional development. In addition, they are facilitating a longitudinal study of the curriculum implementation by continuing the data collection from the original study.

In order to build a theory of action, the project team is synthesizing data from a variety of domains including instructional systems (e.g., curriculum, materials, professional development, support for struggling students, and learning communities), mathematics coaching, networks of teachers, school leadership, and district leadership. Investigators are using a variety of analytic techniques to successfully integrate both quantitative and qualitative data as they seek to understand how school district strategies are playing out in schools and classrooms and how those strategies can be revised in order to improve student learning of mathematics.

An empirically grounded theory of action for implementing reform will help the mathematics education community to implement and to understand the process of reforming mathematics instruction at the middle school level. Many advances in mathematics instruction have been documented within a limited context, but researchers and practitioners need to understand the full range of action necessary to achieve similar successes at a district-wide level. The model developed from this project, in conjunction with longitudinal data, has the potential to guide future reform efforts that seek to provide ambitious and equitable mathematics instruction.

Beyond Bridging: Co-education of Pre-service and In-service Elementary Teachers in Science and Mathematics

This project will implement and study a professional community designed to alleviate the mismatch between the expectations of student teachers in mathematics and science and their mentor in-service teachers. The project is creating a neutral forum for the exchange of perspectives on issues of pedagogy with the expectation that student teachers would implement inquiry-based science and problem-solving mathematics pedagogies with the knowledgeable support of their mentor teachers.

Lead Organization(s): 
Award Number: 
1019860
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
Horizon Research, Inc.
Full Description: 

The University of Arizona is partnering with the Tucson Unified School District to implement and study a professional community designed to alleviate the mismatch between the expectations of student teachers in mathematics and science and their mentor in-service teachers. This vexing problem often arises when student teachers expect to implement reform-based pedagogies while their mentor teachers insist on traditional approaches. The project is creating a "third space," a professional community that includes 40 pre-service and 50 in-service teachers, university scientists and mathematicians, science and mathematics education faculty, and school district administrators. The third space is providing a neutral forum for the exchange of perspectives on issues of pedagogy with the expectation that student teachers would implement inquiry-based science and problem-solving mathematics pedagogies with the knowledgeable support of their mentor teachers. The project is being implemented in two low-income, culturally and linguistically diverse elementary schools with a comparison school used as a control.

The evaluation/research component is a qualitative study led by Horizon Research, Inc. The fundamental research question is whether the third space model establishes interpretive systems that foster enactment of inquiry-based and problem-solving teaching practices. Data collection will include all participants in the third space forum, but focuses on the pre-service and in-service teachers through written products and discussions of lesson design activities, videotapes of teaching by pre-service and in-service teachers, and analysis of comments made in a web-based forum. Instruments to be used are the Reform Teaching Observation Protocol (RTOP), the Experiences Patterns Explanations (EPE) framework, and the Inquiry-Application Instructional Model (I-AIM).

The main product of this project is the third space model and the research that supports its success. The model will be disseminated broadly and if replicated widely, it would represent a major improvement in the professional development of teachers in the areas of inquiry-based science and problem-solving mathematics.

Undergraduate Science Course Reform Serving Pre-service Teachers: Evaluation of a Faculty Professional Development Model

This project focuses on critical needs in the preparation and long-term development of pre-service, undergraduate, K-6 teachers of science. The project investigates the impact on these students of undergraduate, standards-based, reform entry level science courses developed by faculty based on their participation in the NASA Opportunities for Visionary Academics processional development program to identify: short-term impacts on undergraduate students and long-term effects on graduated teachers; characteristics of reform courses and characteristics of effective development efforts.

Project Email: 
Lead Organization(s): 
Award Number: 
0554594
Funding Period: 
Tue, 08/01/2006 to Sun, 07/31/2011
Full Description: 

The Undergraduate Science Course Reform Serving Pre-service Teachers: Evaluation of a Faculty Professional Development Model project is informally known as the National Study of Education in Undergraduate Science (NSEUS). This 5-year project focuses on critical needs in the preparation and long-term development of pre-service, undergraduate, K-6 teachers of science. The goal is to investigate the impact on these students of undergraduate, standards-based, reform entry-level science courses developed by faculty in the NASA Opportunities for Visionary Academics (NOVA) professional development model. Twenty reform and 20 comparison undergraduate science courses from a national population of 101 diverse institutions participating in NOVA, stratified by institutional type, were be selected and compared in a professional development impact design model. Data is being collected in extended on-site visits using multiple quantitative and qualitative instruments and analyzed using comparative and relational studies at multiple points in the impact design model. Criteria for success of the project will be determined by conclusions drawn from the research questions; including evidence and effect sizes of short-term impacts on undergraduate students and long-term effects on graduated in-service teachers in their own classroom science teaching; identification of characteristics of undergraduate reformed courses that produce significant impacts; identification of characteristics of effective faculty, and effective dissemination.

Project Publications and Presentations:

Lardy, Corrine; Mason, Cheryl; Mojgan, Matloob-Haghanikar; Sunal, Cynthia Szymanski; Sunal, Dennis Wayne; Sundberg, Cheryl & Zollman, Dean (2009). How Are We Reforming Teaching in Undergraduate Science Courses? Journal of College Science Teaching, v. 39 (2), 12-14.  

Building an Understanding of Science

Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.

Award Number: 
0624436
Funding Period: 
Mon, 03/12/2007 to Wed, 05/11/2011
Project Evaluator: 
BSCS

Pages

Subscribe to Systems Reform