Systems Reform

Systemic Formative Assessment to Promote Mathematics Learning in Urban Elementary Schools

This project builds on the study of the Ongoing Assessment Project's (OGAP) math assessment intervention on elementary teachers and students and combines the intervention with research-based understandings of systemic reform. This project will produce concrete tools, routines, and practices that can be applied to strengthen programs' implementation by ensuring the strategic support of school and district leaders.

Lead Organization(s): 
Award Number: 
1621333
Funding Period: 
Thu, 09/15/2016 to Sat, 02/29/2020
Full Description: 

Districts have long struggled to implement instructional programming in ways that meaningfully and sustainably impact teaching and learning. Systemic education reform is based on the hypothesis that prevailing patterns of incoherence and misalignment in an educational system can send mixed messages to local implementers as they try to respond to various cues and incentives in the environment. Systemic reform seeks to bring alignment to education systems in multiple ways, including consistency across instructional philosophies, alignment across grade levels, and vertical coherence from district to schools to classrooms. This project builds on the Consortium for Policy Research in Education's (CPRE) ongoing, NSF-funded experimental study of the impacts of the Ongoing Assessment Project's (OGAP) math assessment intervention on elementary teachers and students in Philadelphia-area schools. The project will combine the OGAP math intervention with research-based understandings of systemic reform. OGAP is based upon established theory and research demonstrating the impact of teachers' use of ongoing short- and medium-cycle formative assessment on student learning. It combines these understandings with recent research on learning trajectories within mathematics content domains. By bringing to bear the strengths of all three of these areas of research - formative assessment, learning trajectories, and systemic reform - the project promises a significant contribution to the knowledge base about the application of math learning research to classroom instruction on a large scale. This project will produce concrete tools, routines, and practices that can be applied to strengthen programs' implementation by ensuring the strategic support of school and district leaders. This project is funded by the Discovery Research PreK-12 (DRK-12) and EHR Core Research (ECR) Programs. The DRK-12 program supports research and development on STEM education innovations and approaches to teaching, learning, and assessment. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.

CPRE and the School District of Philadelphia (SDP) will establish a research-practice partnership focused on developing, implementing, refining, and testing a systemic support model to strengthen implementation of the OGAP math intervention in elementary schools. CPRE's current experimental study of OGAP's impacts reveals, preliminarily, statistically significant positive effects on teacher knowledge and student learning. As a result, SDP has decided to expand OGAP into an additional 60 schools in 2016-17. However, the current OGAP study has also revealed weak implementation stemming from a lack of consistent leadership support for the intervention. The project will address this implementation challenge by developing, refining, supporting, and documenting a systemic support component that will accompany OGAP's classroom-level implementation. The systemic supports will be developed by a research-practice partnership between CPRE; SDP; OGAP; the Graduate School of Education at the University of Pennsylvania (PennGSE); and the Philadelphia Education Research Consortium (PERC). The team will use principles of design-based implementation research to iteratively refine and improve the systemic support model. Along with the design and development of the systemic support model, the project will conduct a mixed-methods study of its impacts and roll-out. A three-armed quasi-experimental study will examine the differential impacts of OGAP, with and without systemic supports, and business-as-usual math programming on teacher and student outcomes. A mixed-methods study will examine teacher and administrator experiences in both treatment groups, and will provide feedback to inform the iterative development of the systemic support model.

Improving the Implementation of Rigorous Instructional Materials in Middle Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Ahn)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Lead Organization(s): 
Award Number: 
1719744
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

This project was previously funded under award # 1620900.

Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Jackson)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Lead Organization(s): 
Award Number: 
1620851
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

CAREER: A Study of Factors that Affect Middle School Levels of Readiness for Implementing STEM Programs

This project will investigate whether six urban middle schools are implementing highly effective science, technology, engineering and mathematics (STEM) programs based on factors identified through relevant research and national reports on what constitutes exemplary practices in 21st century-focused schools.

Lead Organization(s): 
Award Number: 
1553098
Funding Period: 
Mon, 02/15/2016 to Sun, 01/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) proposal responsive to Program Solicitation NSF 15-555. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. This project will investigate whether six urban middle schools are implementing highly effective science, technology, engineering and mathematics (STEM) programs based on factors identified through relevant research and national reports on what constitutes exemplary practices in 21st century-focused schools. The project will make this determination through the use of a STEM level of readiness rubric developed through a previous award that will be further revised through this study. The rubric will document the participating schools' level of readiness at the principal, teacher, and student levels using 15 criteria that include a combination of essential supports, core elements, attributes, and characteristics about STEM through: (1) school leadership as the driver of change in education; (2) professional capacity among teachers and staff in all academic areas; (3) student-centered learning climate reflective of high-quality teaching and learning practices; and (4) investment of resources (e.g. staffing, time, space, materials and supplies, partnerships) that support exemplary school-based programs.

The project will use surveys, focus groups, and face-to-face interviews to collect data from 18 principals; classroom observations and a survey to collect data from 380 teachers, and a survey to collect data from 3700 students. These data collections, augmented by other intermittent research activities, will provide insights about extant programs in participating schools regarding effective school leadership, state-of-the art teaching and learning practices, and the impact on students' interest, motivation, and self-efficacy about STEM education. The primary outcome from this project will be a field-tested jointly refined STEM level of readiness rubric based on input from principals, teachers, and students with guidance from the project's advisory board and the Center for Research in Educational Policy at the University of Memphis. The rubric will be instrumental in informing district-level education stakeholders and university-partner decision-makers' choices about where and when to invest resources to further support the development of higher quality STEM programs and schools. It will also be useful in identifying ways to improve students' overall perceptions about future courses of study and careers and the development of professional development modules for teacher training. Beyond these key school district-level outcomes, results will be used to enhance teacher preparation efforts through further refinement of methods courses and the STEM Teacher Leadership Certificate Program at the University.

Supporting Teacher Practice to Facilitate and Assess Oral Scientific Argumentation: Embedding a Real-Time Assessment of Speaking and Listening into an Argumentation-Rich Curriculum (Collaborative Research: Henderson)

The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Lead Organization(s): 
Award Number: 
1621496
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This is an early-stage design and development collaborative study submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) program, in response to Program Solicitation NSF 15-592. The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. To achieve this purpose, the project will examine the validity of a new technology-based formative assessment tool for classroom argumentation--"Diagnosing the Argumentation Levels of Groups" (DiALoG)--for which psychometric validation work has been conducted in a laboratory setting. The DiALoG assessment tool allows teachers to document classroom talk and display scores across multiple dimensions--both intrapersonal and interpersonal--for formative assessment purposes. The project will work with 6th-8th grade science teachers to monitor and support argumentation through real-time formative assessment data generated by the DiALoG instrument. DiALoG will be used in conjunction with "Amplify Science", a Lawrence Hall of Science-developed curriculum that incorporates the science practice of engaging in argument from evidence, and a suite of newly developed Responsive Mini-Lessons (RMLs), which consist of 20-30 minute instructional strategies designed to assist teachers to provide feedback to students' thinking and follow-up to argumentation episodes that the DiALoG tool identifies in need of further support. The study will allow the refinement and expansion of DiALoG and evaluation of its impact on teacher pedagogical content knowledge and formative assessment practices in widespread classroom use.

The project will address two specific research questions: (1) How can DiALoG be refined to provide a formative assessment tool for oral argumentation that is reliable, practical, and useful in middle school classrooms?; and (2) How does the use of DiALoG affect teacher formative assessment practices around evidence-based argumentation, when implementing science units designed to support oral argumentation? In order to answer these questions, the project will conduct a randomized control trial with 100 teachers: 50 will teach argumentation-focused curriculum with DiALoG, 50 will teach the same curriculum without DiALoG. Both control and treatment teachers will receive all digital and physical materials needed to teach three Amplify Science curriculum units. Treatment teachers will be provided also with the most recent version of DiALoG, including the linked RMLs, as well as support materials for using DiALoG with the Amplify curriculum. A subgroup of focus teachers (5 from the treatment group, and 5 from the control group) will be the subject of additional data collection and analysis. Three focus lessons, in which students are engaging in small-group or whole-class oral argumentation, will be selected from each of the three Amplify Science curricular units. Teacher measures for the randomized control trial will include validated instruments, such as (a) a pre- and post-assessment of teacher pedagogical content knowledge; (b) post-lesson and post-unit surveys in which teachers will self-report on their formative assessment practices; and (c) video recordings of selected lessons in the focus classrooms. In order to observe potential differences in formative assessment practices between treatment and control, protocols will be used to analyze the video recordings of focus classrooms, including (a) Reformed Teaching Observation Protocol; (b) Assessment of Scientific Argumentation inside the Classroom; and (c) Formative Assessment for Teachers and Students. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Developing Teachers' Capacity to Promote Argumentation in Secondary Science

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. 

Award Number: 
1503511
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

This project will produce insights into the challenges teachers face in modifying their teaching in the substantial and complex ways demanded by the Next Generation Science Standards. This project will develop and study a program of professional development to help middle and high school science teachers support their students to learn to argue scientifically. The program includes strategies for organizing science activities to create contexts where students have something to argue about and teaching practices that promote sustained, productive argumentation among students. Results will document what aspects of these new practices teachers find easier and more difficult to implement, and how challenges are influenced by the urban schooling contexts in which project teachers work. The project will also further our understanding of how site-based professional development can be structured to support teacher learning and improvement.

The project is a longitudinal study of a cohort of 30 secondary science teachers from an urban school district in California. The professional development (PD) program will be organized around intensive summer institutes followed by 2 school-based lesson study cycles each year, facilitated by trained coaches. The PD work will be carried out over three years. All PD sessions will be recorded for interaction analysis to identify variations in coaching and teacher participation and the influences of such variation on teacher learning. Repeated measures of teachers' conceptions of argumentation will be given over 3 years as a measure of teacher learning. An observation protocol will be developed and used to measure teacher talk and its change over time. A sub-sample of teachers' classrooms will be video recorded to produce a longitudinal record for interaction analyses to link teacher talk to patterns of student argumentation. The third year of the project will add measures of student learning and link them to variations in teacher practice. The final year of the project will produce retrospective analyses that link pathways in teacher learning to features of the PD program and teachers' participation. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Fostering STEM Trajectories: Bridging ECE Research, Practice, and Policy

This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM.  A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417878
Funding Period: 
Mon, 06/15/2015 to Tue, 05/31/2016
Full Description: 

Early childhood education is at the forefront of the minds of parents, teachers, policymakers as well as the general public. A strong early childhood foundation is critical for lifelong learning. The National Science Foundation has made a number of early childhood grants in science, technology, engineering and mathematics (STEM) over the years and the knowledge generated from this work has benefitted researchers. Early childhood teachers and administrators, however, have little awareness of this knowledge since there is little research that is translated and disseminated into practice, according to the National Research Council. In addition, policies for both STEM and early childhood education has shifted in the last decade. 

The Joan Ganz Cooney Center and the New America Foundation are working together to highlight early childhood STEM education initiatives. Specifically, the PIs will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. The papers will be used as anchor topics to organize a forum with a broad range of stakeholders including policymakers as well as early childhood researchers and practitioners. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report. The synthesis report will be widely disseminated by the Joan Ganz Cooney Center and the New America Foundation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed project.

Refining a Model with Tools to Develop Math PD Leaders: An Implementation Study

This project will work with middle school mathematics teachers in San Francisco Unified School District to develop their capacity to conduct professional development for the teachers in their schools. A central goal of this project is to develop models and resources for effective professional development and preparation of professional development leaders in mathematics with special attention to students who are English language learners.

Lead Organization(s): 
Award Number: 
1417261
Funding Period: 
Thu, 01/01/2015 to Mon, 12/31/2018
Full Description: 

There is increased demand for K-12 teacher professional development that yields improvements in student learning and achievement. This need is particularly high given widespread adoption of the Common Core State Standards (CCSS) in mathematics which challenges teachers to incorporate mathematical thinking and problem solving into their instruction. The professional development challenge is exacerbated as our nation's demographics continue to shift, increasing the number of English language learners in school districts throughout the U.S. To meet this demand, the educational community must develop large-scale, system-level professional development programs aligned with the CCSS that are scalable and sustainable. The project team from Stanford University will work with middle school mathematics teachers in San Francisco Unified School District to develop their capacity to conduct professional development for the teachers in their schools. A central goal of this project is to develop models and resources for effective professional development and preparation of professional development leaders in mathematics with special attention to students who are English language learners. These models and resources will: provide school districts with the tools to build local capacity and provide sustainable professional development to all middle school mathematics teachers; improve the quality of teaching and, in turn, make important progress toward ensuring that all students in middle school can achieve the mathematical skills and understandings identified in the new standards; and meet the needs of English language learners. In addition, the Stanford team will contribute to the knowledge base in mathematics education, professional development and English language learners.

In previous work, the team developed two interconnected models--the Problem-Solving Cycle (PSC) and the Mathematics Leadership Preparation (MLP) models for preparing professional development leaders. The PSC model consists of a series of interconnected workshops organized around a problem that can be solved using multiple representations and solutions and can be adapted for multiple grade levels. Each cycle focuses on a different math problem. During the first cycle, teachers collaboratively solve the focal math problem and develop plans for teaching it to their students. Teachers then teach the lesson in their classes and the lessons are videotaped. Subsequent workshops focus on participants' classroom experiences teaching the problem. The goals of these workshops are to help teachers learn how to build on student thinking and to explore a variety of instructional practices. They rely heavily on video clips from the PSC lesson to foster productive conversations and situate the conversations in teachers' classroom instruction. The MLP model is designed to prepare Math Leaders to facilitate the PSC. The MLP prepares teachers to lead professional development for their colleagues. These models showed promise of effectiveness in improving middle school mathematics teachers' knowledge and practice, developing math professional development leaders, and improving student achievement. Investigators intend to refine and test the design of the PSC and MLP models and develop resources that can be used by other schools and districts, as well as conduct an evaluation of the work.

CAREER: Exploring Beginning Mathematics Teachers' Career Patterns

Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1506494
Funding Period: 
Fri, 08/15/2014 to Wed, 07/31/2019
Full Description: 

Recruiting and retaining effective mathematics teachers has been emphasized in national reports as a top priority in educational policy initiatives. Research indicates that the average turnover rate is nearly 23% for beginning teachers (compared to 15% for veteran instructors); turnover rates for beginning mathematics teachers are even higher. Many mathematics teachers with three or fewer years' experience begin their careers in high-needs schools and often transfer to low-need schools at their first opportunity. This reshuffling, as effective teachers move from high- to low-need schools, exacerbates the unequal distribution of teacher quality, with important implications for disparities in student achievement. Research increasingly provides insights into the magnitude of mathematics teacher turnover, but has identified only a limited number of factors that influence teachers' career decisions and often fails to capture the complexity of the teacher labor market. Thus, it is essential to understand the features, practices, and local contexts that are relevant to beginning teachers' career decisions in order to identify relevant strategies for retention. This project will address these issues, building evidence-based theories of ways to improve the quality and equity of the distribution of the mathematics teaching workforce. This support for an early CAREER scholar in mathematics policy will enhance capacity to address issues in the future.

This work will be guided by three research objectives, to: (1) explore patterns in mathematics teachers' career movements, comparing patterns between elementary and middle school teachers, and between high- and low-need schools; (2) compare qualifications and effectiveness of teachers on different career paths (e.g., movement in/out of school, district, field); and (3) test a conceptual model of how policy-malleable factors influence beginning math teachers' performance improvement and career movements. The PI will use large-scale federal and state longitudinal data on a cohort of teachers who were first-year teachers in 2007-08 and taught mathematics in grades 3-8. Three samples will be analyzed separately and then collectively: a nationally representative sample from the Beginning Teacher Longitudinal Study (about 870 teachers who represent a national population of nearly 85,970); about 4,220 Florida teachers; and about 2,410 North Carolina teachers. In addition, the PI will collaborate with Education Policy Initiative at Carolina (EPIC) at UNC-Chapel Hill to collect new data from the 2015-16 cohort of first-year teachers in NC (about 800 teachers) and follow them for 2 years. The new data collection will provide detailed and reliable measures on the quality of both pre- and in-service teacher supports in order to understand how they may be linked to teachers' career movements and performance.

The original award # of this project was 1350158.

Instructional Leadership for Scientific Practices: Resources for Principals in Evaluating and Supporting Teachers' Science Instruction

This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1415541
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

Although K-8 principals are responsible for instructional improvement across all subject areas, their focus has traditionally been on literacy and mathematics and only occasionally on science content and practice. New standards and assessments in science require that principals and other instructional leaders provide significant support to teachers to help them successfully integrate scientific practices into their instruction. There is evidence that these instructional leaders often lack the knowledge, resources or skills to provide this support. This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level.

The resources developed will involve: (1) Introducing scientific practices (including rationales, descriptions and vignettes illustrating each of the 8 scientific practices); (2) Using tools in schools (providing an observation protocol, teacher feedback form and improvement planning template); and (3) Analyzing sample video (including links to video of K-8 science instruction, completed supervision tools, explanations of their coding, and discussion of how to use them with teachers). The project will conduct in-depth interviews with four principals, work with 25 principals in the Boston Public Schools to iteratively design and test the resources. The project will also develop a measure of Leadership Content Knowledge of Scientific Practices (LCK-SP) which will be used to assess principals' knowledge. The project's research component will: (1) investigate principals' current knowledge about scientific practices and methods for supervision of science instruction; and (2) examine how resources can be designed to support instructional leaders' content knowledge of scientific practices.

Pages

Subscribe to Systems Reform