Professional Development

Dynamic Geometry in Classrooms

This project is conducting repeated randomized control trials of an approach to high school geometry that utilizes Dynamic Geometry (DG) software and supporting instructional materials to supplement ordinary instructional practices. It compares effects of that intervention with standard instruction that does not make use of computer drawing tools.

Project Email: 
Lead Organization(s): 
Award Number: 
0918744
Funding Period: 
Tue, 09/01/2009 to Sat, 08/31/2013
Project Evaluator: 
Ed Dickey
Full Description: 

The project is conducting repeated randomized control trials of an approach to high school geometry that utilizes dynamic geometry (DG) software and supporting instructional materials to supplement ordinary instructional practices.  It compares effects of that intervention with standard instruction that does not make use of computer drawing/exploraction tools. The basic hypothesis of the study is that use of DG software to engage students in constructing mathematical ideas through experimentation, observation, data recording, conjecturing, conjecture testing, and proof results in better geometry learning for most students. The study tests that hypothesis by assessing student learning in 76 classrooms randomly assigned to treatment and control groups. Student learning is assessed by a geometry standardized test, a conjecturing-proving test, and a measure of student beliefs about the nature of geometry and mathematics in general. Teachers in both treatment and control groups receive relevant professional development, and they are provided with supplementary resource materials for teaching geometry. Fidelity of implementation for the experimental treatment is monitored carefully. Data for answering the several research questions of the study are analyzed by appropriate HLM methods. Results will provide evidence about the effectiveness of DG approach in high school teaching, evidence that can inform school decisions about innovation in that core high school mathematics course. The main research question of the project is: Is the dynamic geometry approach better than the business-as-usual approach in facilitating the geometric learning of our students (and more specifically our economically disadvantaged students) over the course of a full school year?

The main resources/products include geometry teachers’ professional development training materials, suggested dynamic geometry instructional activities to supplement current high school geometry curriculum, instruments such as Conjecturing-Proving Test, Geometry Belief Instrument, Classroom Observation Protocols, DG Implementation Questionnaire and Student Interview Protocols. 

The general plan for the four-year project is as follows:

Year 1: Preparation (All research instruments, professional development training and resource materials, recruitment and training of participants, etc.); 

Year 2: The first implementation of the dynamic geometry treatment, and related data collection and initial data analysis; 

Year 3: The second implementation of the DG treatment, and related data collection and data analysis; 

Year 4: Careful and detailed data analysis and reporting.

We are now in project year 3. Data are collected for the second implementation of the DG treatment. For data collected during project year 2, some initial analysis (the analysis on the geometry pretest and posttest data and the psychometric analysis on the project developed instruments) has been conducted. More thorough analysis of the collected data is still on going. The analysis on the geometry test shows that the experimental group significantly outperformed the control group on geometry performance.

The evaluation will be implemented throughout the project’s four-year duration, with an evolving balance of formative and summative evaluation activities.  In the project’s first three years, the evaluation will emphasize formative functions, designed to inform the project research team of the relative strengths and weaknesses of the research design and execution, and target corrections and improvements of the research components. Summative evaluation activities will also take place in these years with the collection of data on student achievement and teacher change. Evaluation activities for year 4 will focus on the summative evaluation of the project’s accomplishment and especially its impact on participating teachers and students. Evaluation reports will be issued annually with a final summative report presented at the end of year 4.

The research results will be disseminated via the following efforts: 1) Creating and constantly updating the project web site; 2) Publishing the related research articles in research journals such as Journal for Research in Mathematics Education; 3) Presenting at state, regional, national, and international research and professional meetings; 4) Meeting with state and local education agencies, schools, and mathematics teacher educators at other universities for presenting the research findings and using the DG approach in more schools and more mathematics teacher education programs; and 5) Contacting more school districts, with a view to developing relationships and ties that would smooth the way to disseminate the research results.

Investigations in Cyber-enabled Education (ICE)

Investigations in Cyber-enabled Education (ICE) strives to provide a professional development design framework for enhancing teacher ability to provide science, technology, and math (STM) instruction for secondary students. Exploratory research will clarify ICE framework constructs and gather empirical evidence to form the basis of anticipated further research into the question: Under what circumstances can cyber-enabled collaboration between STM scientists and educators enhance teacher ability to provide STM education?

Partner Organization(s): 
Award Number: 
0918340
Funding Period: 
Wed, 07/01/2009 to Sat, 06/30/2012

Integrating Computing Across the Curriculum (ICAC): Incorporating Technology into STEM Education Using XO Laptops

This project builds and tests applications tied to the school curriculum that integrate the sciences with mathematics, computational thinking, reading and writing in elementary schools. The investigative core of the project is to determine how to best integrate computing across the curriculum in such a way as to support STEM learning and lead more urban children to STEM career paths.

Project Email: 
Award Number: 
1404467
Funding Period: 
Sat, 08/01/2009 to Sun, 07/31/2011
Project Evaluator: 
Leslie Cooksy - Univ. of Delaware
Full Description: 

Computer access has opened an exciting new dimension for STEM education; however, if computers in the classroom are to realize their full potential as a tool for advancing STEM education, methods must be developed to allow them to serve as a bridge across the STEM disciplines. The goal of this 60-month multi-method, multi-disciplinary ICAC project is to develop and test a program to increase the number of students in the STEM pipeline by providing teachers and students with curricular training and skills to enhance STEM education in elementary schools. ICAC will be implemented in an urban and predominantly African American school system, since these schools traditionally lag behind in filling the STEM pipeline. Specifically, ICAC will increase computer proficiency (e.g., general usage and programming), science, and mathematics skills of teachers and 4th and 5th grade students, and inform parents about the opportunities available in STEM-centered careers for their children.

The Specific Aims of ICAC are to:

SA1. Conduct a formative assessment with teachers to determine the optimal intervention to ensure productive school, principal, teacher, and student participation.

SA2. Implement a structured intervention aimed at (1) teachers, (2) students, and (3) families that will enhance the students’ understanding of STEM fundamentals by incorporating laptops into an inquiry-based educational process.

SA3. Assess the effects of ICAC on:

a. Student STEM  engagement and performance.

b. Teacher and student computing specific confidence and utilization.

c. Student interest in technology and STEM careers.

d. Parents’ attitudes toward STEM careers and use of computers.

To enable us to complete the specific aims noted above, we have conducted a variety of project activities in Years 1-3. These include:

  1. Classroom observations at the two Year 1 pilot schools
  2. Project scaling to 6 schools in Year 2 and 10 schools in Year 3
  3. Semi-structured school administrator interviews in schools
  4. Professional development sessions for teachers
  5. Drafting of curriculum modules to be used in summer teacher institutes and for dissemination
  6. In-class demonstration of curriculum modules
  7. Scratch festivals each May
  8. Summer teacher institutes
  9. Student summer camps
  10. Surveying of teachers in summer institutes
  11. Surveying of teachers and students at the beginning and end of the school year
  12. Showcase event at end of student workshops

The specific ICAC activities for Years 2-5 include:

  • Professional development sessions (twice monthly for teachers), to integrate the ‘best practices’ from the program.
  • Working groups led by a grade-specific lead teacher. The lead teacher for each grade in each school will identify areas where assistance is needed and will gather the grade-specific cohort of teachers at their school once every two weeks for a meeting to discuss the progress made in addition to challenges to or successes in curricula development.  
  • ICAC staff and prior trained teachers will visit each class monthly during the year to assist the teachers and to evaluate specific challenges and opportunities for the use of XOs in that classroom.  
  • In class sessions at least once per month (most likely more often given feedback from Teacher Summer Institutes) to demonstrate lesson plans and assist teachers as they implement lesson plans.
  • ICAC staff will also hold a joint meeting of administrators of all target schools each year to assess program progress and challenges. 
  • Teacher Summer Institutes – scaled-up to teachers from the new schools each summer to provide training in how to incorporate computing into their curriculum.
  • Administrator sessions during the Teacher Summer Institutes; designed to provide insight into how the laptops can facilitate the education and comprehension of their students in all areas of the curriculum, discuss flexible models for physical classroom organization to facilitate student learning, and discussions related to how to optimize the use of computing to enhance STEM curricula in their schools.  Student Summer Computing Camps – designed to teach students computing concepts, make computing fun, and enhance their interest in STEM careers.  
  • ICAC will sponsor a yearly showcase event in Years 2-5 that provides opportunities for parents to learn more about technology skills their children are learning (e.g., career options in STEM areas, overview of ICAC, and summary of student projects). At this event, a yearly citywide competition among students also will be held that is an expanded version of the weeklong showcase event during the student summer camps.
  • Surveying of students twice a year in intervention schools.
  • Surveying of teachers at Summer Institutes and then at the end of the academic year.
  • Coding and entry of survey data; coding of interview and observational data.
  • Data analysis to examine the specific aims (SA) noted above:
    • The impact of ICAC on teacher computing confidence and utilization (SA 3.b).
    • Assess the effects of (1) teacher XO training on student computing confidence and utilization (SA 3.b), (2) training on changes in interest in STEM careers (SA 3.c), and (3) XO training on student engagement (SA 3.a).
    • A quasi-experimental comparison of intervention and non-intervention schools to assess intervention effects on student achievement (SA 3.a).
    • Survey of parents attending the yearly ICAC showcase to assess effects on parental attitudes toward STEM careers and computing (SA 3.d).

The proposed research has the potential for broad impact by leveraging technology in BCS to influence over 8,000 students in the Birmingham area. By targeting 4th and 5th grade students, we expect to impact STEM engagement and preparedness of students before they move into a critical educational and career decision-making process. Further, by bolstering student computer and STEM knowledge, ICAC will impart highly marketable skills that prepare them for the 81% of new jobs that are projected to be in computing and engineering in coming years (as predicted by the US Bureau of Labor Statistics).3 Through its formative and summative assessment, ICAC will offer intellectual merit by providing teachers throughout the US with insights into how computers can be used to integrate the elementary STEM curriculum. ICAC will develop a model for using computers to enhance STEM education across the curriculum while instilling a culture among BCS schools where computing is viewed as a tool for learning.

(Previously listed under Award # 0918216)

The Classroom Ecosystem Explorer (CEE): Developing and Testing a Multimedia Tool to Support Early Grades Instruction in Science

This project is designed to assist K-3 teachers in teaching life and physical science for conceptual understanding. It integrates videos, stills and voice-over into one multimedia web-based tool. The program provides teachers with experiences in understanding details related to the \"how\" of high quality science teaching. The professional development activities illuminate what happens in planning and in arranging science classrooms to promote student learning.

Award Number: 
0554615
Funding Period: 
Sat, 07/01/2006 to Wed, 06/30/2010

Mentored and Online Development of Educational Leaders for Science (MODELS)

The project provides a detailed research plan to build on a university-based mentor model to design school-based approaches. It addresses two challenges of implementing professional development: a) transitioning professional development to schools and b)assessing its effects on teacher and student learning. It is common for curricula to be introduced to teachers through university-based professional development programs, but its transition to schools requires careful planning, monitoring and support from the university at the initial stages.

Award Number: 
0455877
Funding Period: 
Fri, 07/01/2005 to Wed, 06/30/2010

Building an Understanding of Science

Understanding Science provides an accurate portrayal of the nature of science and tools for teaching associated concepts. This project has at its heart a public re-engagement with science that begins with teacher preparation. To this end, its immediate goals are (1) improve teacher understanding of the nature of the scientific enterprise and (2) provide resources and strategies that encourage and enable K-16 teachers to incorporate and reinforce the nature of science throughout their science teaching.

Award Number: 
0624436
Funding Period: 
Mon, 03/12/2007 to Wed, 05/11/2011
Project Evaluator: 
BSCS

Toward a Scalable Model of Mathematics Professional Development: A Field Study of Preparing Facilitators to Implement the Problem-solving Cycle

The study includes two and a half years of preparation and support for all the mathematics instructional leaders (ILs) within a large urban school district with a substantial minority student enrollment. These ILs will implement the Problem-Solving Cycle model with the mathematics teachers in their schools. Researchers will analyze the preparation and support that ILs need, the quality of their implementation, and the impact of the PD process on ILs, teachers, and students.

Lead Organization(s): 
Award Number: 
0732212
Funding Period: 
Mon, 10/01/2007 to Thu, 09/30/2010
Full Description: 

The primary goal of the project is to investigate the scalability of the Problem-Solving Cycle (PSC) model of mathematics professional development (PD) and accompanying facilitation materials—that is, whether the PSC can be implemented with integrity by multiple facilitators in multiple settings. In the proposed study we will provide ongoing support to a group of middle school mathematics instructional leaders (ILs) so that they can develop the skills to successfully implement the PSC with the mathematics teachers in their schools. The specific nature of this support is expected to change over the duration of the project, and to gradually decrease as the ILs develop the ability to implement the PSC on their own. Our research will address the following questions:

  1. What preparation is provided to ILs prior to their implementation of the PSC? What support is provided during implementation? How does this support change with successive iterations of the PSC?
  2. How do ILs implement the PSC? How does implementation vary across ILs and over time? What factors account for the variation?
  3. What is the impact of preparation for, and implementation of, the PSC on ILs?
  4. What is the impact of participation in the PSC on middle school mathematics teachers?
  5. What is the impact on the mathematics achievement of students whose teachers participate in the PSC?

 


[1] In this proposal we refer to all school or district personnel who will be trained to facilitate the PSC as “instructional leaders” (ILs) although we recognize that they may have other titles.

Effective Science Teaching for English Language Learners (ESTELL): A Preservice Teacher Professional Development Research Project Across Three Universities in California

Effective Science Teaching for English Language Learners (ESTELL): A Pre-Service Teacher Professional Development Research Project project is funded by the National Science Foundation DR-K-12 Discovery Research Program. The ESTELL project focuses on improving the science teaching and learning of K-6 linguistic minority students who are currently underserved in K-6 education through improving the pre-service education of elementary school teachers.

Project Email: 
Award Number: 
0822402
Funding Period: 
Mon, 09/01/2008 to Fri, 08/31/2012
Project Evaluator: 
Michael Oliver
Full Description: 

The Discovery Research K-12 (DR-K12) proposal Effective Science Teaching for English Language Learners (ESTELL): A Pre-Service Teacher Professional Development Research Project Across Three Universities in California is submitted for consideration for a full research and development project in the Frontier Challenge Strand a ? assuring all students the opportunity to learn STEM content. Project investigators will conduct an experimental design study on the impact of an ESTELL elementary teacher education designed to prepare novice teachers to teach science to English Language Learner (ELL) and a qualitative study on program implementation. The ESTELL project builds on prior research in two areas: the integration of inquiry science, language and literacy practices; and the CREDE Five Standards for Effective Pedagogy which have identified a common set of teaching practices associated with increased achievement of ELL. This project will adapt this approach to pre-service teacher preparation. The ESTELL model of pre-service teacher education will be integrated into every stage of teacher preparation and induction from the science teaching methods courses in the post-baccalaureate credential programs, to the clinical setting of student teaching and the first two years of teaching. Researchers will focus on three research questions: (1) What is the impact of the ESTELL teacher education program on novice teachers beliefs and practice? (2) What is the relationship between the use of ESTELL by program graduates and the science achievement of 4th-5th grade students? and (3) What is the impact of the ESTELL program on the beliefs and practice of the participating science methods faculty, teacher supervisors and cooperating teachers?

Researching Mathematics Leader Learning

This project studies mathematics professional development leaders' understandings and practices associated with developing mathematically rich learning environments. It investigates this issue by considering: How can leaders cultivate professional development environments in which teachers have a greater opportunity to grapple with and deeply understand mathematics? The project studies how explicit attention to the cultivation of sociomathematical norms influences leaders' understanding of the process of creating mathematically rich environments and the impacts on their practices.

Lead Organization(s): 
Award Number: 
0554186
Funding Period: 
Mon, 05/01/2006 to Sat, 04/30/2011
Full Description: 

Our research and development work focuses on one aspect of mathematics professional development, when teachers are engaged in solving, discussing, and sharing mathematical work. Although mathematics professional development may include other activities, we specifically focus on how leaders learn to attend to doing mathematics with teachers because it is a primary time during PD that teachers may be developing deeper understandings of mathematics. To support their learning about cultivating rich teacher learning environments, leaders explored two frameworks: sociomathematical norms (norms for mathematical reasoning) and a set of practices for orchestrating productive mathematical discussions. The staff of RMLL created and facilitated seminars as learning opportunities for leaders, studied what and how leaders learned about facilitation, and investigated how leaders facilitated PD in their schools and districts.

As our research project has evolved, we have revised our frameworks for supporting leader development to include a focus on identifying the purposes for doing mathematics with teachers.  We have used Deborah Ball and her colleagues' work at the University of Michigan to draw a distinction between common content knowledge that teachers hold in common with other professional using mathematics and specialized content knowledge that teachers need to know because of their unique role in   We engage in mathematics with teachers in professional development to help them develop not just common content knowledge but specialized knowledge as well. To develop specialized mathematical knowledge, teachers need to engage in explanations that make taken-for-granted ideas in mathematics explicit. Norms for explanation and representational use are vital. These norms are fostered through the orchestration of discussions. In redesigning seminars according to these ideas, we aim to have leaders select and design tasks that engage teachers more comprehensively with the mathematical knowledge they need to teach. Leaders need to know how to specify purposes for doing mathematics in ways that develop teachers’ SCK and identify tasks and discussion prompts that immerse teachers in SCK. They need to know how to pursue this purpose when orchestrating discussions and support the development of sociomathematical norms in ways that unpack teachers’ highly symbolic or incomplete reasoning. In short, we augmented our initial emphasis on sociomathematical norms with this new emphasis on SCK. supporting learners in the classroom.

We are completing analyses of the experiences of leaders in our revised seminars to understand what they gained from our revised frameworks in planning for and enacting professional development.

Building Systems for Quality Teaching and Learning in Science

This project develops tools and materials that address the need schools have to implement results-oriented teacher learning programs that ensure highly qualified science teachers in every classroom. The project will (1) develop and disseminate the Building Systems for Quality Teaching and Learning in Science Simulation and Facilitator Guide, and (2) develop and disseminate three Building Systems for Science Learning Modules.

Lead Organization(s): 
Award Number: 
0553174
Funding Period: 
Thu, 06/01/2006 to Mon, 05/31/2010

Pages

Subscribe to Professional Development