Professional Development

Changing Curriculum, Changing Practice

This project is studying the impact of implementing a NSF-funded, high school mathematics curriculum that emphasizes mathematical habits of mind. This curriculum focuses on ways of thinking and doing mathematics in contrast with curricula that focus on mathematical topics. The project is studying the development of teachers' mathematical knowledge for teaching and their capacity to align their instruction with the new curriculum.

Award Number: 
1019945
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2012
Full Description: 

The CME Project Mathematical Practices Implementation Study project (formerly called "Changing Curriculum, Changing Practice"), led by mathematics educators at the Education Development Center, is studying the impact of implementing a NSF-funded, high school mathematics curriculum that emphasizes mathematical habits of mind. This curriculum focuses on ways of thinking and doing mathematics in contrast with curricula that focus on mathematical topics. The project is studying the development of teachers' mathematical knowledge for teaching and their capacity to align their instruction with the new curriculum. The project includes a moderate level of professional development and the development of valid and reliable instruments to assess teachers' mathematical knowledge for teaching and their instructional practices.

This four-year, mixed-methods study is investigating the conjecture that high school teachers' implementation of a curriculum emphasizing mathematical habits of mind will lead to measurable changes in teachers' mathematical knowledge and their instruction. The investigators are also interested in the relationships among (1) teachers' prior knowledge, (2) their use of the curriculum and (3) the school-level support for implementation. The investigators are studying the implementation of the curriculum by 70 teachers in 12 schools that vary in socio-economic status of the students and geographic location. The research design includes observations of the instruction of a sub-sample of nine teachers to obtain a finer-grained measure of instructional practice. They are developing or adapting existing instruments that measure teachers' knowledge and alignment of instruction with the goals of teaching mathematical habits of mind. Using the Instructional Quality Assessment rubric during visits to the classroom, they are assessing students' opportunities to develop mathematical thinking skills. The use of mixed-methods approaches will allow the researchers to analyze the data from multiple perspectives.

This study is part of a long-term effort to help high school students develop specific mathematical habits of mind. The current study is building on previous curriculum development and also developing insights for future studies investigating students' adoption of mathematical habits of mind. The current project is an important effort to understand the roles teachers play in implementing curricular changes that have the potential for improving student achievement in mathematics. Teachers are the critical bridging agents who connect curriculum and learners. This study will help to explain how teachers' knowledge, teachers' instruction, and teachers' contexts within schools contribute to or detract from the faithful implementation of the goals intended by a curriculum. It will lay a foundation for understanding future efforts to assess what students learn and how they learn it.

SimScientists Human Body Systems: Using Simulations to Foster Integrated Understanding of Complex, Dynamic, Interactive Systems

This project leverages curricular module development to design, develop, and test new cyberlearning modules that integrate multiple (circulation, respiration, and digestion) systems of the human body. The project aims to deepen science content knowledge, science inquiry skills, and model-based reasoning skills for high school biology students. The project will use simulations showing how individual systems function, how they work together, and how the integration of all three creates a dynamic and reactive biological system.

Lead Organization(s): 
Award Number: 
1020264
Funding Period: 
Wed, 09/15/2010 to Sun, 08/31/2014
Project Evaluator: 
Gargani + Company
Full Description: 

This research and development project leverages curricular module development to design, develop, and test new cyberlearning modules that integrate multiple (circulation, respiration, and digestion) systems of the human body. The project aims to deepen science content knowledge, science inquiry skills, and model-based reasoning skills for high school biology students. The project will use simulations showing how individual systems function, how they work together, and how the integration of all three creates a dynamic and reactive biological system. It is expected that the presentation of this dynamic system will result in a deeper understanding of the materials and enhanced performance on student achievement measures. The goals of the project are to: 1. Develop an integrated simulation of the human digestive, circulatory and respiratory systems that allows students to develop productive inquiry strategies. 2. Embed the simulation in online instructional modules that provide immediate, individualized coaching as students are challenged with a series of investigative tasks. 3. Provide reports of students' performances during the activities to students and teachers. 4. Develop follow-up online collaborative investigations that provide differentiated instruction to strengthen students' understanding and support transfer and opportunities to engage in scientific discourse. 5. Develop one benchmark assessment that measures outcomes across all three body systems and reports to students and teachers. 6. Develop and deploy professional development to support teachers as they use these materials. 7. Provide evidence of the technical quality, feasibility, and usability of the new materials. 8. Study the influence of these materials on complex science and inquiry learning of the integration of the three human body systems modeled. A small scale randomized, controlled trial will be performed at the end of the project. The project is grounded in model-based learning, cognitive learning research, and an evidence-centered design. Universal Design for Learning is factored into all simulation designs. Questions asked during the evaluation include: Is the project progressing as planned? Are the modules useable? Are the users satisfied? Are the modules used as intended in a typical high school setting? Does this improve teaching and learning of key content? The primary investigator is WestEd; the American Association for the Advancement of Science is a partner and three teachers from nearby schools serve as co-developers. The project has an external evaluator as well as a strong advisory board. The project will create multi-leveled instructional cyber-modules. These modules will contain embedded assessments that provide students and teachers immediate and individualized coaching. Professional development will also provide teachers tools and guidance to increase their learning of human body systems. Dissemination strategies include featuring the modules on WestEd's award-winning website as well as submission of academic papers to journals and national conferences targeted at science educators and education researchers. Because these modules supplement classroom curricula and use online technology, they could potentially be used to teach millions of high school biology students.

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing a Professional Development System

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities.

Lead Organization(s): 
Award Number: 
1726082
Funding Period: 
Sun, 08/15/2010 to Sat, 06/30/2018
Project Evaluator: 
Open Minds LLC
Full Description: 

The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

Products:

Journal Articles:

Brenneman, K., Lange, A., & Nayfeld, I. (2018). Integrating STEM into Preschool Education: Designing a Professional Development Model in Diverse Settings. Early Childhood Education Journal, 47(1), 15-28. https://doi.org/10.1007/s10643-018-0912-z

Lange, A. A., Nayfeld, I., Mano, H., & Jung, K. (revise and resubmit). Effects of a professional development model on preschool teachers’ attitudes, beliefs, and knowledge around STEM and teaching DLLs. 

Lange, A. A., Trivette, C., Nayfeld, I., & Mano, H. (in preparation). Impacts of a preschool professional development approach on teaching and coaching practice: A mixed-methods analysis.

Books:

Lange, A. A., Brenneman, K., & Mano, H. (2019). Teaching STEM in the Preschool Classroom: Exploring Big Ideas with 3-5 Year Olds. New York, NY: Teachers College Press.

Practitioner Publications:

Mano, H., Molina, K., Nayfeld, I., & Lange, A. A. (2019). Planting the Seeds of Engineering: Preschoolers Think about, Talk about, and Solve a Real Problem in the Garden. Science and Children, 57 (2), 80–84.

Lange, A. A., Dias, A., & Brenneman, K. (2016). Reflecting on Teaching Length Measurement to Young Children. Teaching Young Children, 9(5), 24-27. (product from SciMath DRK-12 predecessor project)

Blogs: 

Lange, A.A. (2019). Engaging Preschoolers in STEM: It’s Easier Than You Think! Invited guest blog for the DREME Network. https://dreme.stanford.edu/news/engaging-preschoolers-stem-it-s-easier-you-think 

Lange, A. A. (2015). Early STEM: Fuel for Learning. https://nieer.wordpress.com/2015/10/06/early-stem-fuel-for-learning/ 

Newsletter: www.ecstemlab.com/newsletter

Preschool STEM Institute: www.ecstemlab.com/preschool-stem-institute

This project was previously funded under award #1019576.

Studying Topography, Orographic Rainfall, and Ecosystems (STORE) with Geospatial Information Technology

This project is using innovative Geospatial Information Technology-based learning in high school environmental science studies with a focus on the meteorological and ecological impacts of climate change. The resources developed are using ArcGIS Explorer Desktop and Google Earth software applications to increase students' learning and interest in science and careers and will be adaptable for teachers to improve classroom implementation.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1019645
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Project Evaluator: 
Haynie Research and Evaluation
Full Description: 

STORE is developing and piloting classroom uses of GIS-based interactive data files displaying climatological, topographical, and biological data about an especially ecologically and topographically diverse section of mid-California and a section of western New York State, plus projected climate change outcomes in 2050 and 2099 from an IPCC climate change model. Both areas contain weather stations. The participating students and teachers live in those areas, hence the place-based focus of the project.

To help teachers make curricular decisions about how to use these data with their students, the project has, with input from six design partner teachers, produced a curriculum module exemplar consisting of six lessons. The lessons start with basic meteorological concepts about the relationship between weather systems and topography, then focus on recent climatological and land cover data. The last two lessons focus on IPCC-sanctioned climate change projections in relation to possible fates of different regional species. Technology light versions of these lessons send students directly to map layers displaying the data for scientific analysis. Technology-heavy versions address the additional goal of building students' capacities to manipulate features of geographic information systems (GIS). Hence, the technology-heavy versions require use of the ARC GIS Explorer Desktop software, whereas the technology light versions are available in both the ARC software and in Google Earth. Google Earth makes possible some student interactivity such as drawing transects and studying elevation profiles, but does not support more advanced use of geographic information system technology such as queries of data-containing shape files or customization of basemaps and data representational symbology.

Answer keys are provided for each lesson. Teachers have in addition access to geospatial data files that display some storm systems that moved over California in the winter of 2010-2001 so that students can study relationships between actual data about storm behavior and relationship to topography and the climatological data which displays those relationships in a summary manner. This provides the student the opportunity to explore differences between weather and climate.

To increase the likelihood of successful classroom implementation and impact on student learning, the professional development process provides the conditions for teachers to make good adaptability decisions for successful follow-through. Teachers can implement the six lessons or adapt them or design their own from scratch. The project requires that they choose from these options, explain on content representation forms their rationales for those decisions, and provide assessment information about student learning outcomes from their implementations. The project provides the teachers with assessment items that are aligned to each of the six lessons, plus some items that test how well the students can interpret the STORE GIS data layers.

All of this work is driven by the hypothesis that science teachers are more likely to use geospatial information technology in their classrooms when provided with the types of resources that they are provided in this project. In summary, these resources include:

1.     tutorials about how to use the two GIS applications

2.     sufficiently adaptive geospatial data available in free easily transportable software applications

3.     lessons that they can implement as is, adapt, or discard if they want to make up their own (as long as they use the data)

4.     supportive resources to build their content knowledge (such as overview documents about their states' climates and information about the characteristics of each data layer and each data set available to them).

 

The growth and evolution of the teachers' technological pedagogical content knowledge is being tracked through interviews, face-to-face group meetings, and classroom observations. Also being tracked is the extent to which the teachers and students can master the technology applications quickly and on their own without workshops, and how well teachers provide feedback to the students and assess their learning outcomes when implementing STORE lessons. As the project moves into its third and final year, we will be studying outcomes from the first classroom implementation year (i.e. year two of the project) and determining to what extent the professional development strategies need to be revised in relation to how the teachers are responding to the project resources and forms of professional support. In the end, the project will contribute to the knowledge base about what professional development strategies are appropriate for getting teachers to use these types of resources, what decisions teachers make about how to use the resources for different courses and student groups they teach, and what are the outcomes of those uses in terms of curricular material, instructional strategies, and student learning.

ScratchEd: Working with Teachers to Develop Design-Based Approaches to the Cultivation of Computational Thinking

This project is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind.

Project Email: 
Award Number: 
1019396
Funding Period: 
Sun, 08/15/2010 to Wed, 07/31/2013
Project Evaluator: 
Education Development Center
Full Description: 

The ScratchEd project, led by faculty at the Massachusetts Institute of Technology and professionals at the Education Development Center, is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind.

The effectiveness of the ScratchEd project is being evaluated by research addressing four specific questions: (1) What are the levels of teacher participation in the various ScratchEd PD offerings and what do teachers think of these experiences? (2) Do teachers who participate in ScratchEd PD activities change their use of Scratch in classroom instruction to create design-based learning opportunities? (3) Do the students of teachers who participate in the ScratchEd PD activities show evidence of developing an understanding of computational thinking concepts and processes? (4) When the research instruments developed for the evaluation are made available for teachers in the Scratch community to use for self-evaluation, how do teachers make use of them? Because both computational thinking and design-based instruction are complex activities, the project research is using a combination of survey, interview, and artifact analysis methods to answer the questions.

The ScratchEd professional development and research work will provide important insight into the challenge of helping teachers create productive learning environments for development of computational thinking. Those efforts will also yield a set of evaluation tools that can be integrated into the ScratchEd resources and used by others to study development of computational thinking and design-based instruction.

Events

Social Media

Project AIM: All Included in Mathematics

This project will adapt and study successful discourse strategies used during language arts instruction to help teachers promote mathematically-rich classroom discourse. Of special interest is the use of models to promote mathematics communication that includes English language learners (ELL) in mathematics discourse.The project will result in a full 40-hour professional development module to support mathematics discourse for Grade 2 teachers, with an emphasis on place value, multidigit addition and subtraction, and linear measurement.

Award Number: 
1020177
Funding Period: 
Sun, 08/01/2010 to Fri, 07/31/2015
Project Evaluator: 
Judy Storeygard, TERC
Full Description: 

Developers and researchers at North Carolina State University and Horizon Research, Inc. are adapting and studying successful discourse strategies used during language arts instruction to help teachers promote mathematically-rich classroom discourse. Of special interest to the project is the use of models to promote mathematics communication that includes English language learners (ELL) in mathematics discourse.

The project is conceived as a design experiment that includes successive instructional engineering cycles in which the R&D team designs professional learning tasks, implements the tasks with teachers, and revises the tasks and their sequencing to better support the desired learning outcomes. The members of the project team then examine the effects of the PD on teachers' instruction and the possibilities for scaling up the materials across PD facilitators, grade levels, and curriculum materials. The overarching research questions guiding the research and development effort proposed in this project are: How do generalist elementary teachers learn to promote high quality mathematics discourse that includes all students in their classrooms and engages those students in meaningful mathematics learning opportunities? How do we scale up an intervention designed to support elementary teacher learning of ways to promote high quality mathematics discourse in their classrooms?

The project will result in a full 40-hour professional development module to support mathematics discourse for Grade 2 teachers, with an emphasis on place value, multidigit addition and subtraction, and linear measurement. The main professional learning tasks of the program will have been piloted and studied in a series of sessions with mathematics coaches and teachers.

Professional Development for Culturally Relevant Teaching and Learning in Pre-K Mathematics

This project is creating and studying a professional development model to support preK teachers in developing culturally and developmentally appropriate practices in counting and early number. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses counting and basic number operations with the intention of exploring the domain as it connects to children's experiences in their homes and communities.

Award Number: 
1019431
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2018
Project Evaluator: 
Victoria Jacobs
Full Description: 

Developers and researchers at the University of Wisconsin are creating and studying a professional development model that connects research in counting and early number (CGI), early childhood, and funds of knowledge. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses a specific, circumscribed content domain - counting and basic number operations - with the intention of exploring the domain in depth particularly as it connects to children's experiences in their homes and communities and how it is learned and taught through play.

The project designs, develops, and tests innovative resources and models for teachers to support ongoing professional learning communities. These learning communities are designed to identify and build on the rich mathematical understandings of all pre-K children. The project's specific goals are to instantiate a reciprocal "funds of knowledge" framework for (a) accessing children's out-of-school experiences in order to provide instruction that is equitable and culturally relevant and (b) developing culturally effective ways to support families in understanding how to mathematize their children's out-of-school activities. Teachers are observed weekly during the development and evaluation process and student assessments are used to measure students' progress toward meeting project benchmarks and the program's effectiveness in reducing or eliminating the achievement gap.

The outcome is a complete professional development model that includes written and digital materials. The product includes case studies, classroom video, examples of student work, and strategies for responding to students' understandings.

Models of Professional Development for Mathematics Teachers

This project is conducting a comprehensive study of professional development models designed for mathematics teachers in grades K-12. The research team will identify key constructs and frameworks within professional development programs and identify types of professional development models. The goals of the project are to encourage researchers and professional developers to reconceptualize mathematics professional development, develop a shared language, and renew discussions on effective professional development for teachers of mathematics.

Partner Organization(s): 
Award Number: 
1019934
Funding Period: 
Sun, 08/15/2010 to Tue, 07/31/2012
Full Description: 

The Models of Professional Development for Mathematics Teachers project is conducting a comprehensive study of professional development models designed for mathematics teachers in grades K-12. The research team will identify key constructs and frameworks within professional development programs and identify types of professional development models. The goals of the project are to encourage researchers and professional developers to reconceptualize mathematics professional development, develop a shared language, and renew discussions on effective professional development for teachers of mathematics. The project team includes faculty and students at North Carolina State University and a research scientist at American Institutes for Research. The project team is coding and analyzing descriptive data on mathematics professional development (MPD) gathered from studying mathematics teacher education research literature. They are also conducting interviews with authors of the studies they have identified. The project is investigating the general question: What are the various models used by mathematics teacher educators when designing and implementing mathematics professional development? Specifically, they are asking: 1. What are similarities and differences across goals, theoretical frameworks, contexts and structures that exist in the design of MPD offered to K-12 teachers? 2. How does the field name and define various characteristics of MPD? 3. How can the characteristics of the various MPD designs be grouped into meaningful models? What are the main elements that define these models? The researchers hope that their efforts to describe models of professional development will help educators to move away from professional development designed around a few salient features and move toward professional development models that contain a theoretical framework and coherent features that work together. They want professional developers and researchers to use a common language to study and assess professional development. Their analysis of existing professional development projects in mathematics teaching will offer the following outcomes: 1. An empirically established definition of characteristics and models of MPD, with explanations of the various elements that comprise these models. 2. A coding protocol for use in the classification of MPD models and the organization of current information about existing MPD. 3. A theoretical framework for organizing knowledge about MPD that can foster new ways to think about these models in the design of innovative MPD for teachers. 4. A set of research-related innovations such as new hypotheses for studying MPD, new approaches to testing the explanatory and predictive validity of various features of professional development, and new formats for describing the state of the art in MPD. 5. Concepts that can support a revision of what is meant by best practices or effective features of MPD. 6. An open-source, web-based, searchable database with descriptions of various MPD. This exploratory project will provide an opportunity for the mathematics education field to learn more about professional development and approaches to conducting research on professional development.

Language-Rich Inquiry Science with English Language Learners (LISELL)

This exploratory study develops and pilot-tests a model for improving science teaching and learning with middle school ELLs. Study goals include: (1) clarifying pedagogical constructs of language-rich science inquiry and the academic language of science and their relationships across the learning contexts of middle school science classrooms, teacher professional development and family science workshops, (2) developing and refining instruments to study these constructs in context, and (3) conducting pilot tests of the model and instruments.

Award Number: 
1019236
Funding Period: 
Sun, 08/15/2010 to Wed, 07/31/2013
Full Description: 

This exploratory study develops, pilot-tests, and refines a model for improving middle school English Language Learners' (ELLs) science learning. The model incorporates two pedagogical constructs (language-rich science inquiry and academic language development); and three learning settings (teacher professional development workshops, middle school science classrooms, and parent-student-teacher science workshops). The specific objectives of the study are: (1) to clarify the two pedagogical constructs and their relationships across the three learning contexts, (2) to develop and refine instruments that will be useful for the study of these constructs in these learning contexts, and (3) to conduct pilot tests of the model and instruments.

The study's development phase consists of the production, adaptation, and pilot testing of instructional strategies for teachers and learning materials for students. Instructional strategies for teachers are centered on three key inquiry practices: (a) coordinating theory and evidence, (b) controlling variables, and (c) cause and effect reasoning across 6th grade earth science, 7th grade life science, and 8th grade physical science. Learning materials for students consist of lessons in a workbook with units highlighting the study of academic language. Also, this phase of the study includes the development of resources to support parents' participation and measurement instruments to gather data during the research phase of the study.

The research phase of the study consists of pilot testing of the model. Two research questions guide the study: (1 What is the value for ELL students, their teachers and their parents of an instructional model that highlights language-rich science inquiry practices and academic language development strategies?; and (2)What is the value for ELL students, their teachers and their parents of an instructional model that is enacted in the contexts of middle school science classrooms, student-parent-teacher science workshops, and teacher professional development workshops? Assuming a quasi-experimental, pretest-posttest design, a power analysis defined a sample size of 1,000 middle school students (800 for the treatment group, and 200 for the control group) in 40 classrooms of three middle schools in the state of Georgia. A total of 12 teachers (8 science teachers and 2 English for Students of Other Languages teachers) were selected using a targeted strategy; and 40 randomly selected parents constitute the remaining population sample. The intervention consists of the use of teacher instructional strategies focused on exploring and elaborating cause-effect relationships, differentiating between evidence and theory, and identifying and controlling variables; students' use of instructional materials on academic language; and exploration of parents' science funds of knowledge. Data gathering strategies employ five instruments: (a) a teacher-focus-group interview protocol, (b) a teacher observation protocol, (c) a parent-student interview protocol, (d) a student academic language writing test, and (e) a student-constructed-response science inquiry test. Data interpretation strategies include qualitative analysis using narrative and semantic structure analysis and statistical analyses. An advisory board and an evaluator conduct the evaluation component of the study, inclusive of formative and summative aspects.

The outcome of this study is a research-informed and field-tested science instructional model focused on the improved learning of ELLs and a set of valid and reliable measuring instruments.

Integrating Engineering and Literacy

This project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students.

Lead Organization(s): 
Award Number: 
1020243
Funding Period: 
Wed, 09/01/2010 to Wed, 05/31/2017
Full Description: 

The Integrating Engineering and Literacy (IEL) project is developing and testing curriculum materials and a professional development model designed to explore the potential for introducing engineering concepts in grades 3 - 5 through design challenges based on stories in popular children's literature. The project research and development team at Tufts University is working with pre-service teachers to design and test the curriculum modules for students and the teacher professional development model. Then the program is tested and refined in work with 100 in-service teachers and their students in a diverse set of Massachusetts schools. The research team hypothesizes that professional development for elementary teachers using an interdisciplinary method for combining literature with engineering design challenges will increase the implementation of engineering in 3-5 classrooms and have positive impacts on students. The driving questions behind this proposed research are: (1) How do teachers' engineering (and STEM) content knowledge, pedagogical content knowledge, and perceptions or attitudes toward engineering influence their classroom teaching of engineering through literacy? (2) Do teachers create their own personal conceptions of the engineering design process, and what do these conceptions look like? (3) What engineering/reading thinking skills are students developing by participating in engineering activities integrated into their reading and writing work? The curriculum materials and teacher professional development model are being produced by a design research strategy that uses cycles of develop/test/refine work. The effects of the program are being evaluated by a variety of measures of student and teacher learning and practice. The project will contribute materials and research findings to the ultimate goal of understanding how to provide elementary school students with meaningful opportunities to learn engineering and develop valuable problem solving and thinking skills.

Pages

Subscribe to Professional Development