Professional Development

Establishing a Roadmap for Large-Scale Improvement of K-12 Education in the Geographical Sciences

This project will engage in a community-wide effort to synthesize the literature from a broad range of fields and to use the findings to create frameworks that will guide the planning, implementation, and scale-up of efforts to improve geographic education over the next decade. This will result in a set of publicly reviewed, consensus reports that will guide collaborative efforts and broaden awareness of the acute need for geographic literacy and geographic science education.

Award Number: 
1049437
Funding Period: 
Wed, 09/15/2010 to Fri, 08/31/2012
Project Evaluator: 
Education and Training Institute
Full Description: 

Having a geographically literate population will be critical to the economic stability, physical security, and environmental sustainability of the United States in the 21st century. Yet the U.S. still lags far behind the other developed nations in education in the geographical sciences. Recognizing the risk that geographic illiteracy poses for our country, the National Geographic Society (NGS), in collaboration with the Association of American Geographers, American Geographical Society, and National Council for Geographic Education, proposes to engage in a set of research synthesis and dissemination activities that will provide road maps for the design of assessment, professional development, instructional materials, public information, and educational research for the next decade. The work will be done by a broad range of experts from K-12 institutions as well as the geographical science and educational research communities

Building on a 25 year collaboration, NGS and its partners propose to engage in a community-wide effort to synthesize the literature from a broad range of fields and to use the findings to create frameworks that will guide the planning, implementation, and scale-up of efforts to improve geographic education over the next decade. The result of this effort will be a set of publicly reviewed, consensus reports that will guide the collaborative efforts of the project partners and the larger geographic education community, as well as broaden awareness of the increasingly significant and acute need for geographic literacy and education in the geographical sciences in our country.

This project will create three in-depth "roadmap" reports targeted at practitioners, takeholders, and policymakers. Developed by expert committees, these three reports will be on:

- Assessment frameworks for systematic monitoring and continuous improvement of geographic education programs.

- Professional development for teachers and instructional materials to support large-scale educational improvement across diverse contexts.

- Educational research agenda to set priorities and identify appropriate methodologies for research that will improve geographic education into the future.

These three reports will be summarized in an executive summary written for a broad audience of educators, policymakers, and concerned citizens.

In addition to these consensus reports, the project will also conduct research on public understanding of the nature and importance of geographic literacy, with particular attention to the key audiences of educators, policymakers, and citizens. In addition to shaping the project's reports, this research will inform the broader communications and dissemination efforts of this project and its partners.

Confronting the Challenges of Climate Literacy (Collaborative Research: McNeal)

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

Award Number: 
1443024
Funding Period: 
Wed, 09/15/2010 to Sat, 10/31/2015
Full Description: 

This project is developing three inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. Climate literacy has emerged as an important domain of education. Yet it presents real challenges in cognition, perception, and pedagogy, especially in understanding Earth as a dynamic system operating at local to global spatial scales over multiple time scales. This research project confronts these issues by examining the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science. The project is a collaborative effort among science educators at TERC, Mississippi State University, and The University of Texas at Austin.

The project uses a backward-design methodology to identify an integrated set of science learning goals and research questions to inform module development. Development and review of draft materials will be followed by a pilot implementation and then two rounds of teacher professional development, classroom implementation, and research in Texas and Mississippi. Research findings from the multiple rounds of implementation will allow an iterative process for refining the modules, the professional development materials, and the research program.

This project focuses on the design, development, and testing of innovative climate change curriculum materials and teacher professional development for Earth Systems science instruction. The materials will be tested in states with teachers in need of Earth Systems Science training and with significant numbers of low income and minority students who are likely to be hard hit by impending climate change. The research will shed light on the challenges of education for climate literacy.

Formerly Award # 1019703.

Confronting the Challenges of Climate Literacy (Collaborative Research: Ledley)

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

Project Email: 
Award Number: 
1019721
Funding Period: 
Wed, 09/15/2010 to Fri, 08/31/2012
Project Evaluator: 
Susan Buhr
Full Description: 

This project is developing three inquiry-based, lab-focused, online Climate Change EarthLabs modules (focus is on the Cryosphere, Climate and Weather, and the Carbon Cycle) as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. Climate literacy has emerged as an important domain of education. Yet it presents real challenges in cognition, perception, and pedagogy, especially in understanding Earth as a dynamic system operating at local to global spatial scales over multiple time scales. This research project confronts these issues by examining the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science. The project is a collaborative effort among science educators at TERC, Mississippi State University, and The University of Texas at Austin.

The project uses a backward-design methodology to identify an integrated set of science learning goals and research questions to inform module development. Development and review of draft materials will be followed by a pilot implementation and then two rounds of teacher professional development, classroom implementation, and research in Texas and Mississippi. Research findings from the multiple rounds of implementation will allow an iterative process for refining the modules, the professional development materials, and the research program.

This project focuses on the design, development, and testing of innovative climate change curriculum materials and teacher professional development for Earth Systems science instruction. The materials will be tested in states with teachers in need of Earth Systems Science training and with significant numbers of low income and minority students who are likely to be hard hit by impending climate change. The research will shed light on the challenges of education for climate literacy.

Confronting the Challenges of Climate Literacy (Collaborative Research: Ellins)

This project is developing inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. This project examines the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1019815
Funding Period: 
Wed, 09/15/2010 to Sun, 08/31/2014
Full Description: 

This project is developing three inquiry-based, lab-focused, online Climate Change EarthLabs modules as a context for ongoing research into how high school students grasp change over time in the Earth System on multiple time scales. Climate literacy has emerged as an important domain of education. Yet it presents real challenges in cognition, perception, and pedagogy, especially in understanding Earth as a dynamic system operating at local to global spatial scales over multiple time scales. This research project confronts these issues by examining the challenges to high-school students' understanding of Earth's complex systems, operating over various temporal and spatial scales, and by developing research-based insights into effective educational tools and approaches that support learning about climate change and Earth Systems Science. The project is a collaborative effort among science educators at TERC, Mississippi State University, and The University of Texas at Austin.

The project uses a backward-design methodology to identify an integrated set of science learning goals and research questions to inform module development. Development and review of draft materials will be followed by a pilot implementation and then two rounds of teacher professional development, classroom implementation, and research in Texas and Mississippi. Research findings from the multiple rounds of implementation will allow an iterative process for refining the modules, the professional development materials, and the research program.

This project focuses on the design, development, and testing of innovative climate change curriculum materials and teacher professional development for Earth Systems science instruction. The materials will be tested in states with teachers in need of Earth Systems Science training and with significant numbers of low income and minority students who are likely to be hard hit by impending climate change. The research will shed light on the challenges of education for climate literacy.

A Learning Progression-Based System for Promoting Understanding of Carbon-Transforming Processes

This project builds on prior efforts with learning progressions, and is focused on key carbon-transforming processes in socio-ecological systems at multiple scales, including cellular and organismal metabolism, ecosystem energetics and carbon cycling, carbon sequestration, and combustion of fossil fuels. The primary project outcomes will be coordinated instructional tools that are useful to professionals at all levels in the science education system--classroom teachers, professional developers, and developers of curricula, standards and assessments.

Lead Organization(s): 
Award Number: 
1020187
Funding Period: 
Wed, 09/15/2010 to Mon, 08/31/2015
Project Evaluator: 
Rose Shaw
Full Description: 

This project--led by science educators at Michigan State University, the National Geographic Society, the Natural Resource Ecology Laboratory (NREL) at Colorado State University, the Berkeley Evaluation and Assessment Research (BEAR) Center, and AAAS Project 2061, and including schools in California, Colorado, Maryland, Michigan, and Washington--builds on prior efforts with learning progressions, and is focused on key carbon-transforming processes in socio-ecological systems at multiple scales, including cellular and organismal metabolism, ecosystem energetics and carbon cycling, carbon sequestration, and combustion of fossil fuels.

The project uses an iterative design research process to develop and refine a suite of tools for reasoning and test efficacy of those tools in geographically and culturally diverse schools. The project team is:

1. Refining and validating a detailed learning progression framework covering the middle and high school years; ultimately, the framework will describe the development of students' capacity to use fundamental principles such as conservation of matter and energy to reason about carbon-transforming processes at multiple scales.

2. Refining 'Tools for Reasoning' that make hidden scientific principles - matter, energy, and scale - visible to students; the power of these tools lies in their flexible use for different processes, systems, scales, and curricular contexts.

3. Developing and refining flexible teaching strategies that engage students in cognitive apprenticeship in the practices of environmental science literacy: a) inquiry and argumentation, b) explanations and predictions, and c) decision-making about environmental issues.

4. Using and refining existing summative assessments, and developing and testing formative assessment tools; these assessment tools will provide teachers and researchers with immediate information about their students' intellectual resources and will be linked to the learning progression framework.

5. Developing, field testing, and assessing the effectiveness of six middle school and six high school units that use project tools and enact project principles; the units introduce students to fundamental principles, engage them in reasoning about carbon-transforming processes at organismal scale, and at landscape and global scales. Each unit includes a) an online formative assessment and b) activity sequences that use tools for reasoning and teaching strategies.

6. Developing, field testing, and assessing professional development materials in both face-to-face and facilitated online forms; the materials introduce teachers to learning progressions in environmental science literacy, assessment tools, tools for reasoning, teaching strategies, and teaching materials and activities, and also address difficulties that teachers encounter in using learning progressions and enacting teaching strategies.

The primary project outcomes will be coordinated instructional tools that are useful to professionals at all levels in the science education system--classroom teachers, professional developers, and developers of curricula, standards and assessments.

Efficacy Study of Metropolitan Denver's Urban Advantage Program: A Project to Improve Scientific Literacy Among Urban Middle School Students

This is an efficacy study to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The study aims to answer the following questions: How does participation in the program affect students' science knowledge, skills, and attitudes toward science; teachers' science knowledge, skills, and abilities; and families engagement in and support for their children's science learning and aspirations?

Award Number: 
1020386
Funding Period: 
Wed, 09/15/2010 to Wed, 08/31/2011
Project Evaluator: 
Maggie Miller
Full Description: 

This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.

CBMS National Forum on Content-based Professional Development for Teachers of Mathematics

This project is organizing and hosting a National Forum on Content-Based Professional Development for Teachers of Mathematics. Expanding on work begun at two previous CBMS Forums, this third forum will provide the participants with a better understanding of the features of high quality content-based professional development and increase the number of college and university mathematics departments who partner with state departments and local school districts to provide professional development to working teachers.

Award Number: 
1052759
Funding Period: 
Wed, 09/15/2010 to Wed, 08/31/2011
Full Description: 

The Conference Board for the Mathematical Sciences (CBMS) is organizing and hosting a National Forum on Content-Based Professional Development for Teachers of Mathematics. The conference continues and expands in a new direction work begun at two previous CBMS Forums. The current forum focuses on content-based professional development that is related to the Common Core State Standards for school mathematics recently released by the National Governors Association (NGA) and the Council of Chief State School Officers (CCSSO). The purpose of this third forum is to provide the participants with a better understanding of the features of high quality content-based professional development for teachers of mathematics and to increase the number of college and university mathematics departments who partner with state departments and local school districts to provide such professional development to working teachers.

The forum features speakers and participants involved in the development of the Common Core State Standards, mathematicians, mathematics education professionals with expertise in teacher professional development, and state and school district personnel.

The conference report will be disseminated widely and the discussions at the forum will provide a critical foundation for the revision of the 2001 CBMS report The Mathematical Education of Teachers (MET). The revised MET will be disseminated broadly through the CBMS participating professional organizations.

Cyber-Enabled Learning: Digital Natives in Integrated Scientific Inquiry Classrooms (Collaborative Research: Wang)

This project investigated the professional development needed to make teachers comfortable teaching with multi-user simulations and communications that students use every day. The enactment with OpenSim (an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics) also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with all selected cyber-enabled cognitive tools framed by constructivism, such as GoogleEarth and Biologica.

Award Number: 
1020091
Funding Period: 
Wed, 09/01/2010 to Wed, 08/31/2011
Project Evaluator: 
HRI
Full Description: 

There is an increasing gap between the assumptions governing the use of cyber-enabled resources in schools and the realities of their use by students in out of school settings. The potential of information and communications technologies (ICT) as cognitive tools for engaging students in scientific inquiry and enhancing teacher learning is explored. A comprehensive professional development program of over 240 hours, along with follow-up is used to determine how teachers can be supported to use ICT tools effectively in classroom instruction to create meaningful learning experiences for students, reducing the gap between formal and informal learning and improve student learning outcomes. In the first year, six teachers from school districts - two in Utah and one in New York - are educated to become teacher leaders and advisors. Then three cohorts of 30 teachers matched by characteristics are provided professional development and field test units over two years in a delayed-treatment design. Biologists from Utah State University and New York College of Technology develop four modules that meet the science standards for both states - the first being changes in the environment. Teachers are guided to develop additional modules. The key technological resource to be used in the project is the Opensimulator 3D application Server (OpenSim), an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics. 

The research methodology includes the use of the classroom observations using RTOP and Technology Use in Science Instruction (TUSI), selected interviews of teachers and students and validated assessments of student learning. Evaluation, by an external evaluator, assesses the quality of the professional development and the quality of the cyber-enabled learning resources, as well as reviews the research design and implementation. An Advisory Board will monitor the project. 

The project is to determine the professional development needed to make teachers comfortable teaching with multi-user simulations and communications that students use everyday. The enactment with OpenSim also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with all selected cyber-enabled cognitive tools framed by constructivism, such as GoogleEarth and Biologica.

Beyond Bridging: Co-education of Pre-service and In-service Elementary Teachers in Science and Mathematics

This project will implement and study a professional community designed to alleviate the mismatch between the expectations of student teachers in mathematics and science and their mentor in-service teachers. The project is creating a neutral forum for the exchange of perspectives on issues of pedagogy with the expectation that student teachers would implement inquiry-based science and problem-solving mathematics pedagogies with the knowledgeable support of their mentor teachers.

Lead Organization(s): 
Award Number: 
1019860
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
Horizon Research, Inc.
Full Description: 

The University of Arizona is partnering with the Tucson Unified School District to implement and study a professional community designed to alleviate the mismatch between the expectations of student teachers in mathematics and science and their mentor in-service teachers. This vexing problem often arises when student teachers expect to implement reform-based pedagogies while their mentor teachers insist on traditional approaches. The project is creating a "third space," a professional community that includes 40 pre-service and 50 in-service teachers, university scientists and mathematicians, science and mathematics education faculty, and school district administrators. The third space is providing a neutral forum for the exchange of perspectives on issues of pedagogy with the expectation that student teachers would implement inquiry-based science and problem-solving mathematics pedagogies with the knowledgeable support of their mentor teachers. The project is being implemented in two low-income, culturally and linguistically diverse elementary schools with a comparison school used as a control.

The evaluation/research component is a qualitative study led by Horizon Research, Inc. The fundamental research question is whether the third space model establishes interpretive systems that foster enactment of inquiry-based and problem-solving teaching practices. Data collection will include all participants in the third space forum, but focuses on the pre-service and in-service teachers through written products and discussions of lesson design activities, videotapes of teaching by pre-service and in-service teachers, and analysis of comments made in a web-based forum. Instruments to be used are the Reform Teaching Observation Protocol (RTOP), the Experiences Patterns Explanations (EPE) framework, and the Inquiry-Application Instructional Model (I-AIM).

The main product of this project is the third space model and the research that supports its success. The model will be disseminated broadly and if replicated widely, it would represent a major improvement in the professional development of teachers in the areas of inquiry-based science and problem-solving mathematics.

Response to Intervention in Mathematics: Beginning Substantive Collaboration between Mathematics Education and Special Education

This project is organizing and hosting a working conference on Response to Intervention (RtI) and related strategies in teaching and assessment in Mathematics. Goals of this work are: To build a community of researchers and practitioners to identify, expand and sustain research needs in this area; to identify and improve the research available related to teaching mathematics within an RtI model; and to develop resources to support teacher's understanding and application of RtI strategies.

Partner Organization(s): 
Award Number: 
1005328
Funding Period: 
Wed, 09/01/2010 to Wed, 02/29/2012
Full Description: 

The National Council of Teachers of Mathematics (NCTM) in collaboration with the Council on Exceptional Children (CEC) is organizing and hosting a focused working conference on Response to Intervention (RtI) and related strategies in teaching and assessment in Mathematics. The ultimate goals of this work are: To build a core community of researchers and practitioners from mathematics education and special education to identify, expand and sustain the research needs in this critical area; to identify and improve the research available related to teaching mathematics within a Response to Intervention model; and to develop professional development resources to support teachers's (pre-service and in-service) understanding and application of research-based RtI strategies in mathematics.

Expected outcomes include: a preliminary analysis of needed research studies; a synthesis of both mathematics education research and special education research around a key question of interest; and examples of content for inclusion in professional development and pre-service teacher education. Results will be disseminated through NCTM and CEC print, web, and conference facilities.

Pages

Subscribe to Professional Development