Login

Professional Development

Moving Next Generation Science Standards into Practice: A Middle School Ecology Unit and Teacher Professional Development Model

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.

Lead Organization(s): 
Award Number: 
1418235
Funding Period: 
Mon, 09/01/2014 - Fri, 08/31/2018
Full Description: 

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. The American Museum of Natural History (AMNH), in collaboration with the University of Connecticut (UConn), and the Lawrence Hall of Science (the Hall), will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices. Teachers will be supported through professional development that is directly linked to the curriculum and is designed to develop their science content knowledge as well as their knowledge of how to teach the curriculum. The project builds on existing AMNH resources that include video and text passages supported with literacy strategies, online interactive data tools to plan and carry out investigations, and prior research on these resources used with teachers in professional development and with students in classrooms. In addition to serving the schools, teachers and students who directly participate, the project's deliverables include the ecology unit, teacher professional development, assessment tools, and a model for designing such comprehensives science programs that relate to NGSS.

The curriculum unit will be modeled after the Biological Sciences Curriculum Study (BSCS) 5E model that will use the 5 Phases (Engage, Explore, Explain, Elaborate, and Evaluate) for students to work through with each of five themes: Ecological Communities, Food Webs, A River Ecosystem, Zebra Mussel Invasion, and Monitoring Human Impact. Teachers will participate in 12 days of professional development that will introduce the program's pedagogical approach (the 5E model) and how it reflects NGSS, with teachers having significant time to learn the science, try out the activities, learn how to facilitate the program, provide feedback on the program as part of the evaluation, and reflect on their practice. The initial approach to the curriculum and teacher professional development will be designed in Year 1 and then iteratively revised and evaluated in Years 2-4 through formative evaluation that focuses on curriculum PD, and measures of student and teacher outcomes. The evaluation will assess the contribution of teacher science and pedagogical knowledge to increases in student knowledge. The evaluation findings and assessment tools developed for the project will provide the foundation for a future efficacy study. The project is one of a relatively small number of projects funded through NSF's DRK-12 program that directly addresses the need for NGSS-related learning resources. The project's learning resources, assessment tools, and model for designing NGSS-related and comprehensive science programs will be shared through professional publications, conference and workshop presentations, and liaison with organizations active in developing new resources bring NGSS into practice.

Moving Next Generation Science Standards into Practice: A Middle School Ecology Unit and Teacher Professional Development Model

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for dual language learners (DLLs) with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials.

Lead Organization(s): 
Award Number: 
1417040
Funding Period: 
Tue, 07/01/2014 - Sat, 06/30/2018
Full Description: 

The 4-year project, Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System (SciMath-DLL), will address a number of educational challenges. Global society requires citizens and a workforce that are literate in science, technology, engineering, and mathematics (STEM), but many U.S. students remain ill prepared in these areas. At the same time, the children who fill U.S. classrooms increasingly speak a non-English home language, with the highest concentration in the early grades. Many young children are also at risk for lack of school readiness in language, literacy, mathematics, and science due to family background factors. Educational efforts to offset early risk factors can be successful, with clear links between high quality early learning experiences and later academic outcomes. SciMath-DLL will help teachers provide effective mathematics and science learning experiences for their students. Early educational support is critical to assure that all students, regardless of socioeconomic or linguistic background, learn the STEM content required to become science and mathematics literate. Converging lines of research suggest that participation in sustained mathematics and science learning activities could enhance the school readiness of preschool dual language learners. Positive effects of combining science inquiry with supports for English-language learning have been identified for older students. For preschoolers, sustained science and math learning opportunities enhance language and pre-literacy skills for children learning one language. Mathematics skills and science knowledge also predict later mathematics, science, and reading achievement. What has not been studied is the extent to which rich science and mathematics experiences in preschool lead to better mathematics and science readiness and improved language skills for preschool DLLs. Because the preschool teaching force is not prepared to support STEM learning or to provide effective supports for DLLs, professional development to improve knowledge and practice in these areas is required before children's learning outcomes can be improved.

SciMath-DLL is an innovative preschool professional development (PD) model that integrates supports for DLLs with high quality science and mathematics instructional offerings. It engages teachers with workshops, classroom-based coaching, and professional learning communities. Development and research activities incorporate cycles of design-expert review-enactment- analysis-redesign; collaboration between researcher-educator teams at all project stages; use of multiple kinds of data and data sources to establish claims; and more traditional, experimental methodologies. Based on initial evidence of promise, the SciMath-DLL project will expand PD offerings to include web-based materials, making the PD more flexible for use in a range of educational settings and training circumstances. An efficacy study will be completed to examine the potential of the SciMath-DLL resources, model, and tools to generate positive effects on teacher attitudes, knowledge, and practice for early mathematics and science and on children's readiness in these domains in settings that serve children learning two languages. By creating a suite of tools that can be used under differing educational circumstances to improve professional knowledge, skill, and practice around STEM, the project increases the number of teachers who are prepared to support children as STEM learners and, thus, the number of children who can be supported as STEM learners.

Supports for Science and Mathematics Learning in Pre-Kindergarten Dual Language Learners: Designing and Expanding a Professional Development System

Supporting Secondary Students in Building External Models (Collaborative Research: Krajcik)

This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12.

Lead Organization(s): 
Award Number: 
1417900
Funding Period: 
Fri, 08/01/2014 - Tue, 07/31/2018
Full Description: 

The Concord Consortium and Michigan State University will collaborate to: (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. By iteratively designing, developing and testing a modeling tool and instructional materials that facilitate the building of dynamic models, the project will result in exemplary middle and high school materials that use a model-based approach as well as an understanding of the potential of this approach in supporting student development of explanatory frameworks and modeling capabilities. A key goal of the project is to increase students' learning of science through modeling and to study student engagement with modeling as a scientific practice.

The project provides the nation with middle and high school resources that support students in developing and using models to explain and predict phenomena, a central scientific and engineering practice. Because the research and development work will be carried out in schools in which students typically do not succeed in science, the products will also help produce a population of citizens capable of continuing further STEM learning and who can participate knowledgeably in public decision making. The goals of the project are to (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building, using, and revising models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. Using a design-based research methodology, the research and development efforts will involve multiple cycles of designing, developing, testing, and refining the systems modeling tool and the instructional materials to help students meet important learning goals related to constructing dynamic models that align with the Next Generation Science Standards. The learning research will study the effect of working with external models on student construction of robust explanatory conceptual understanding. Additionally, it will develop a set of professional development resources and teacher scaffolds to help the expanding community of teachers not directly involved in the project take advantage of the materials and strategies for maximizing the impact of the curricular materials.

Supporting Secondary Students in Building External Models (Collaborative Research: Krajcik)

Supporting Secondary Students in Building External Models (Collaborative Research: Damelin)

This project will (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. 

Lead Organization(s): 
Award Number: 
1417809
Funding Period: 
Fri, 08/01/2014 - Tue, 07/31/2018
Full Description: 

The Concord Consortium and Michigan State University will collaborate to: (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building and using models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. By iteratively designing, developing and testing a modeling tool and instructional materials that facilitate the building of dynamic models, the project will result in exemplary middle and high school materials that use a model-based approach as well as an understanding of the potential of this approach in supporting student development of explanatory frameworks and modeling capabilities. A key goal of the project is to increase students' learning of science through modeling and to study student engagement with modeling as a scientific practice.

The project provides the nation with middle and high school resources that support students in developing and using models to explain and predict phenomena, a central scientific and engineering practice. Because the research and development work will be carried out in schools in which students typically do not succeed in science, the products will also help produce a population of citizens capable of continuing further STEM learning and who can participate knowledgeably in public decision making. The goals of the project are to (1) develop and test a modeling tool and accompanying instructional materials, (2) explore how to support students in building, using, and revising models to explain and predict phenomena across a range of disciplines, and (3) document the sophistication of understanding of disciplinary core ideas that students develop when building and using models in grades 6-12. Using a design-based research methodology, the research and development efforts will involve multiple cycles of designing, developing, testing, and refining the systems modeling tool and the instructional materials to help students meet important learning goals related to constructing dynamic models that align with the Next Generation Science Standards. The learning research will study the effect of working with external models on student construction of robust explanatory conceptual understanding. Additionally, it will develop a set of professional development resources and teacher scaffolds to help the expanding community of teachers not directly involved in the project take advantage of the materials and strategies for maximizing the impact of the curricular materials.

Supporting Secondary Students in Building External Models (Collaborative Research: Damelin)

Reclaiming Access to Inquiry-based Science Education (RAISE) for Incarcerated Students

This project will develop a Universal Design for Learning, project-based inquiry science program that includes virtual learning environments, virtual laboratories, and digital scaffolds and supports that promote scientific learning for incarcerated youth.

Lead Organization(s): 
Award Number: 
1418152
Funding Period: 
Mon, 09/01/2014 - Fri, 08/31/2018
Full Description: 

This project is unique in targeting arguably the most vulnerable learners in the American education system: youth confined in juvenile corrections facilities. Three primary problems confronting science education in these settings are: (1) inadequate curriculum and resources; (2) inadequately prepared and supported teachers; and (3) a heterogeneous group of learners, many of whom have disabilities, are disengaged, and/or lack reading and mathematics skills. Failure to address these challenges and the broader educational needs of incarcerated juveniles has broad implications for society, so this project is timely and has high potential for broad impacts.

To address these problems project personnel will employ an iterative development process to develop a curriculum designed to increase access to and mastery of science content, concepts, and inquiry skills critical for careers in the 21st Century STEM workforce. They will then prepare teachers to implement the program in pilot testing in juvenile corrections facilities in Massachusetts. Specifically, the investigators will: (1) align and adapt an existing biology curriculum using Common Core State Standards and Universal Design for Learning principles; (2) develop all materials, digital supports and scaffolds, virtual learning environments and labs, assessments, and teacher professional development materials for one curriculum unit; (3) conduct usability evaluation of all materials and use the results to refine and finalize two curriculum units; (4) prepare teachers to implement the biology program in juvenile corrections education settings; (5) conduct a quasi-experimental study to examine the impacts of the biology program on the content knowledge and inquiry skills of students, their interests, and their levels of engagement; and, (6) disseminate the findings to various constituency groups. The final product will be a Universal Design for Learning, project-based inquiry science program that includes virtual learning environments, virtual laboratories, and digital scaffolds and supports that promote scientific learning for incarcerated youth.

Reclaiming Access to Inquiry-based Science Education (RAISE) for Incarcerated Students

Professional Development Models and Outcomes for Science Teachers (PDMOST)

The investigators propose to characterize the multitude of approaches currently employed in the professional development of K-12 teachers of science, and to measure the effectiveness of such approaches in increasing teacher knowledge in the sciences. The project will result in a website, conference presentations, and scholarly and professional publications.

Lead Organization(s): 
Award Number: 
1417438
Funding Period: 
Mon, 09/01/2014 - Thu, 08/31/2017
Full Description: 

The investigators propose to characterize the multitude of approaches currently employed in the professional development of K-12 teachers of science, and to measure the effectiveness of such approaches in increasing teacher knowledge in the sciences. The project will study 150 professional development programs for teachers of science in grades K-12. The sample will cover grade bands K-4, 5-8, and 9-12. Subject matter will include life science (biology), physical science (physics, chemistry), earth and space science. Such programs are funded through competitive federal grants for local implementation (by universities, museums, schools, and others), by state and local governments, by private institutions, and conducted by many federal agencies. To date, there has not been a national inventory and study of the effectiveness of teacher professional development programs in science, using common outcome measures of teacher instructional practice. If successful, the findings from this research will allow professional development providers and policymakers to design more effective teacher professional development programs and should provide a national landscape of teacher professional development in science.

In specific, the researchers will focus on assessing gains in teachers' subject matter knowledge and knowledge of student misconceptions, and will correlate these with professional development program design features. Teachers of students from underrepresented groups will be oversampled to ensure special analyses for this group are possible. Hierarchical linear modeling will be used in analyzing the results. The project will result in a website, conference presentations, and scholarly and professional publications.

Professional Development Models and Outcomes for Science Teachers (PDMOST)

Preparing Urban Middle Grades Mathematics Teachers to Teach Argumentation Throughout the School Year

The objective of this project is to develop resources, models, and tools (RMTs) that help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. A coherent, portable, yearlong professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas.

Lead Organization(s): 
Award Number: 
1417895
Funding Period: 
Sun, 06/15/2014 - Thu, 05/31/2018
Full Description: 

The project is an important study that builds prior research to bring a comprehensive implementation of reform mathematics instruction focused on mathematical argumentation to an urban school district. The objective of this full research and development project is to develop resources, models, and tools (RMTs) that help inservice middle grades mathematics teachers support mathematical argumentation throughout the school year. Mathematical argumentation, the construction and critique of mathematical conjectures and justifications, is a fundamental disciplinary practice in mathematics that students often never master. Building on a proof of concept of the project's approach in short curriculum units from two prior NSF-funded studies, this project expands the model to help teachers support mathematical argumentation all year. A coherent, portable, yearlong professional development program on mathematical argumentation has the potential to increase access to mathematical argumentation for students nationwide and, in particular, to address the needs of teachers and students in urban areas. Demonstrating this program in the nation's capital likely attracts broad interest and produces important knowledge about how to implement mathematical practices in urban settings. Increasing mathematical argumentation in schools has the potential for dramatic contributions to students' achievement and participation in 21st century workplaces.

Mathematical argumentation is rich discussion in which students take on mathematical authority and co-construct conjectures and justifications. For many teachers, supporting such discourse is challenging; many are most comfortable with Initiate-Respond-Evaluate types of practices and/or have insufficient content understanding. The professional development trains teachers to be disciplined improvisers -- professionals with a toolkit of tools, knowledge, and practices to be deployed creatively and responsively as mathematical argumentation unfolds. This discipline includes establishing classroom norms and planning lessons for argumentation. The model's theory of action has four design principles: provide the toolkit, use simulations of the classroom to practice improvising, support learning of key content, and provide job-embedded, technology-enabled supports for using new practices all year. Three yearlong studies will address design, feasibility, and promise. In Study 1 the team co-designs the RMTs with District of Columbia Public Schools staff. Study 2 is a feasibility study to examine program implementation, identify barriers and facilitators, and inform improvements. Study 3 is a quasi-experimental pilot to test the promise for achieving intended outcomes: expanding teachers' content knowledge and support of mathematical argumentation, and increasing students' mathematical argumentation in the classroom and spoken argumentation proficiency. The studies will result in a yearlong professional development program with documentation of the theory of action, design decisions, pilot data, and instrument technical qualities.

Preparing Urban Middle Grades Mathematics Teachers to Teach Argumentation Throughout the School Year

Instructional Leadership for Scientific Practices: Resources for Principals in Evaluating and Supporting Teachers' Science Instruction

This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level. 

Lead Organization(s): 
Award Number: 
1415541
Funding Period: 
Mon, 09/01/2014 - Thu, 08/31/2017
Full Description: 

Although K-8 principals are responsible for instructional improvement across all subject areas, their focus has traditionally been on literacy and mathematics and only occasionally on science content and practice. New standards and assessments in science require that principals and other instructional leaders provide significant support to teachers to help them successfully integrate scientific practices into their instruction. There is evidence that these instructional leaders often lack the knowledge, resources or skills to provide this support. This project will research the knowledge and supervision skills principals' and other instructional leaders' need to support teachers in successfully integrating scientific practices into their instruction, and develop innovative resources to support these leaders with a particular focus on high-minority, urban schools. The project will contribute to the emerging but limited literature on instructional leadership in science at the K-8 school level.

The resources developed will involve: (1) Introducing scientific practices (including rationales, descriptions and vignettes illustrating each of the 8 scientific practices); (2) Using tools in schools (providing an observation protocol, teacher feedback form and improvement planning template); and (3) Analyzing sample video (including links to video of K-8 science instruction, completed supervision tools, explanations of their coding, and discussion of how to use them with teachers). The project will conduct in-depth interviews with four principals, work with 25 principals in the Boston Public Schools to iteratively design and test the resources. The project will also develop a measure of Leadership Content Knowledge of Scientific Practices (LCK-SP) which will be used to assess principals' knowledge. The project's research component will: (1) investigate principals' current knowledge about scientific practices and methods for supervision of science instruction; and (2) examine how resources can be designed to support instructional leaders' content knowledge of scientific practices.

Instructional Leadership for Scientific Practices: Resources for Principals in Evaluating and Supporting Teachers' Science Instruction

Improving Students' Mathematical Proficiency through Formative Assessment: Responding to an Urgent Need in the Common Core Era

The overarching goal of this RAPID project is to contribute to the national goal of improving students' mathematical proficiency by providing information and guidance to mathematics education practitioners and scholars to support a sharpened focus on formative assessment. The project produces, analyzes, and makes available to the field timely information regarding the views and practices of mathematics teacher educators and professional development specialists regarding formative assessment early in the enactment of ambitious standards in mathematics.

Lead Organization(s): 
Award Number: 
1439366
Funding Period: 
Sun, 06/15/2014 - Sun, 05/31/2015
Full Description: 

The products of this project will be useful to national organizations, their state and local affiliates, and school districts as they plan and offer mathematics professional development to support the implementation of high quality mathematics instruction to meet the urgent national need for smart and effective approaches to support ambitious college and career-ready standards in mathematics. Directing mathematics instruction toward ambitious learning goals is intended to address the critically important national priority of improving students' mathematics achievement. It is widely recognized that successful attainment of the content and practices contained in any ambitious set of learning goals, requires well-designed, smartly delivered, professional development for the nation's mathematics teachers. The information generated from this project is critical to inform nationwide mathematics professional development to support the implementation of ambitious mathematics learning goals. For our nation's teachers and students to attain ambitious learning goals, it is imperative that formative assessment becomes a more prominent feature of mathematics instruction as there is an evidence base that suggests formative assessment positively impacts student learning.

The overarching goal of this RAPID project is to contribute to the national goal of improving students' mathematical proficiency by providing much-needed information and guidance to mathematics education practitioners and scholars to support a sharpened focus on formative assessment. The project produces, analyzes, and makes available to the field timely information regarding the views and practices of mathematics teacher educators and professional development specialists regarding formative assessment early in the enactment of ambitious standards in mathematics. Moreover, it offers a potentially transformative view of formative assessment as integrated with other promising mathematics instructional frameworks, approaches and practices that have already established a strong presence in the mathematics education community and have influenced the instructional practice of many teacher educators and teachers. The project will result in: (a) an in-depth analysis of the responses of mathematics teacher educators and professional development specialists to a recent survey that probed their practices and beliefs related to formative assessment and its intertwined relationships with promising mathematics instructional frameworks, approaches and practices; (b) collaborative work among mathematics teacher educators and professional development specialists to elaborate effective ways to focus on formative assessment in the preparation and continuing education of teachers of mathematics; and (c) a set of design features and principles, along with associated activities, intended to undergird creating and sustaining an approach to mathematics teacher professional development that both attends to critically important instructional practices of formative assessment and links to other promising mathematics instructional frameworks, approaches and practices.

Improving Students' Mathematical Proficiency through Formative Assessment: Responding to an Urgent Need in the Common Core Era

Identifying an Effective and Scalable Model of Lesson Study

This project investigates the variation in teachers' practice of lesson study to identify effective and scalable design features of lesson study associated with student mathematics achievement growth in Florida. Lesson study is a teacher professional development model in which a group of teachers works collaboratively to plan a lesson, observe the lesson in a classroom with students, and analyze and discuss the student work and understanding in response to the lesson.

Lead Organization(s): 
Award Number: 
1417585
Funding Period: 
Fri, 08/01/2014 - Mon, 07/31/2017
Full Description: 

This project investigates the variation in teachers' practice of lesson study to identify effective and scalable design features of lesson study associated with student mathematics achievement growth in Florida. Lesson study is a teacher professional development model in which a group of teachers works collaboratively to plan a lesson, observe the lesson in a classroom with students, and analyze and discuss the student work and understanding in response to the lesson. Florida is the first state to promote lesson study as a statewide professional development model for implementing the Common Core State Standards for Mathematics and improving instruction and student achievement. The original lesson study model imported from Japan poses a challenge for implementation and scalability in the United States, and there is emerging evidence that modifications have been made to make it feasible within the constraints of teachers' work schedules and school structures. Thus, there is an urgent need to investigate the variation in lesson study practice and how modified design features of mathematics lesson study are associated with improvement of student mathematics achievement. The research team will conduct a statewide survey of approximately 1,000 teachers in grades 3-8 who are practicing mathematics lesson study during the 2015-2016 academic year. They will examine variations in four design features of lesson study (structure, facilitator, knowledge resources for lesson planning, and research lesson and discussion) and their associated organizational supports. They will examine the relationships between these design features and the original lesson study model, teacher learning, and students' mathematics achievement growth.

This project is designed to advance the scholarship and practice of lesson study by: (1) identifying an effective and scalable model of mathematics lesson study with specific design features that are associated with positive teacher learning experience and improved student mathematics achievement; (2) advancing practical knowledge on how this effective and scalable model of mathematics lesson study can be practiced, based on in-depth case studies of lesson study groups; and (3) contributing to teacher learning principles that can be applied to various professional development programs in mathematics. The project will disseminate evidence regarding the characteristics of an effective and scalable mathematics lesson study model to state and district-level facilitators across the country. The project will also develop a Florida Lesson Study Network (FLSN) to share resources and facilitate communications regarding lesson study practice.

Identifying an Effective and Scalable Model of Lesson Study
Syndicate content