Technology

Building Environmental and Educational Technology Competence and Leadership Among Educators: An Exploration in Virtual Reality Professional Development

This project will bring locally relevant virtual reality (VR) experiences to teachers and students in areas where there is historically low participation of women and underrepresented minorities in STEM. This exploratory project will support the professional growth and development of current middle and high school STEM teachers by providing multiyear summer training and school year support around environmental sciences themed content, implementing VR in the classroom, and development of a support community for the teachers.

Lead Organization(s): 
Award Number: 
2010563
Funding Period: 
Mon, 06/15/2020 to Wed, 05/31/2023
Full Description: 

Many of the nation's most vulnerable ecosystems exist near communities with scant training opportunities for teachers and students in K-12 schools. The Louisiana wetlands is one such example. Focusing on these threatened natural environments and their connection to flooding will put science, technology, engineering, and mathematics (STEM) concepts in a real-world context that is relatable to students living in these areas while integrating virtual reality technology. This technology will allow students in rural and urban schools lacking resources for field trips to be immersed into simulated field experiences. This exploratory project will support the professional growth and development of current middle and high school STEM teachers by providing multiyear summer training and school year support around three specific areas: (1) environmental sciences themed content; (2) implementing virtual reality (VR) in the classroom, and (3) development of a support community for the teachers. Findings from this project will advance the knowledge of the most effective components in professional development for teachers to incorporate new knowledge into their classrooms. This project will bring locally relevant VR experiences to teachers and students in areas where there is historically low participation of women and underrepresented minorities in STEM. Through new partnerships formed with collaborators, the results of this project will be shared broadly in informal and formal education environments including public outreach events for an increase in public scientific literacy and public engagement.

This project will expand the understanding of the impact that a multi-layered professional development program will have on improving the self-efficacy of teachers in STEM. This project will add to the field's knowledge tied to the overall research question: What are the experiences of secondary STEM teachers in rural and urban schools who participate in a multiyear professional development (PD) program? This project will provide instructional support and PD for two cohorts of ten teachers in southeastern Louisiana. Each summer, teachers will complete a two-week blended learning PD training, and during the academic year, teachers will participate in an action research community including PD meetings and monthly Critical Friends Group meetings. A longitudinal pre-post-post design will be employed to analyze whether the proposed method improves teacher's self-efficacy, instructional practices, integration of technology, and leadership as the teachers will deploy VR training locally to grow the base of teachers integrating this technology into their curriculum. The findings of this project will improve understanding of how innovative place-based technological experiences can be brought into classrooms and shared through public engagement.

Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic.

Lead Organization(s): 
Award Number: 
2030436
Funding Period: 
Fri, 05/15/2020 to Fri, 04/30/2021
Full Description: 

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

This study will collect data using the AmeriSpeak Teen Panel of approximately 2,000 students aged 13 to 17 and the Infinite Campus Student Information System with a sample of approximately 2.5 million high school students. The data sets allow for relevant comparisons of student experiences prior to and during the COVID-19 pandemic and offer unique perspectives with nationally representative samples of U.S. high school students. New data collection will focus on formal and informal STEM learning opportunities, engagement, STEM course taking, the nature and frequency of instruction, interactions with teachers, interest in STEM, and career aspirations. Weighted data will be analyzed using descriptive statistics and within and between district analysis will be conducted to assess group differences. Estimates of between group pandemic learning loss will be provided with attention to demographic factors.

This RAPID award is made by the DRK-12 program in the Division of Research on Learning. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics by preK-12 students and teachers, through the research and development of new innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for the projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

 

 

 

 

Systemic Transformation of Inquiry Learning Environments for STEM

This project will help teachers design and facilitate high-quality, real world STEM experiences for students, as teachers move from traditional approaches to organizing their teaching around interdisciplinary questions or problems. The project will work with building administrators to make the structural changes needed for interdisciplinary STEM instruction.

Award Number: 
2010530
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

This project will address a special challenge for schools: preparing educators to adopt an integrated approach to Science, Technology, Engineering and Mathematics (STEM). This is especially important for educators in underserved urban populations where teacher expertise and guidance are necessary for meaningful student engagement with STEM. Frameworks for helping teachers make these changes are urgently needed, especially approaches that support new perspectives for STEM teaching and learning at the school level. This project will help teachers design and facilitate high-quality, real world STEM experiences for students, as teachers move from traditional approaches to organizing their teaching around interdisciplinary questions or problems. The project will work with building administrators to make the structural changes needed for interdisciplinary STEM instruction. School-based instructional coaches will develop new strategies for guiding STEM teaching and sustaining the work long-term.

The project goals are to: (1) determine the feasibility and utility of the refined project approach, (2) determine the utility of the project's implementation for facilitating change in teacher knowledge and practices, (3) understand the utility of the project's implementation for fostering student change, and (4) understand the extent to which the refined project model supports organizational change in schools. To do this, the program will make its professional development more accessible by adding a blended learning component, expanding the school leadership program, formalizing a training program for new facilitators, and identifying novel ways of defining student outcomes for transdisciplinary learning. The mixed methods research design will involve twenty schools (elementary and intermediate) in New York City and New Haven, CT. A quasi-experimental, within-school rotation model will randomize grade-level participation at the school level to yield a sample of at least 240 teachers, 3,000 students, 40 school-based coaches, and 20 administrators. Quantitative data will primarily capture teacher and student outcomes, while the qualitative data will describe the context of the model implementation and provide a deeper understanding of the quantitative results.

CAREER: Exploring Teacher Noticing of Students' Multimodal Algebraic Thinking

This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

Award Number: 
1942580
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Effective teachers of mathematics attend to and respond to the substance of students' thinking in supporting classroom learning. Teacher professional development programs have supported teachers in learning to notice students' mathematical thinking and using that noticing to make instructional decisions in the classroom. This project investigates and expands teachers' learning to notice in two important ways. First, the research expands beyond teachers' noticing of written and verbal thinking to attend to gesture and other aspects of embodied and multimodal thinking. Second, the project focuses on algebraic thinking and seeks specifically to understand how teacher noticing relates to the content of algebra. Bringing together multimodal thinking and the mathematical ideas in algebra has the potential to support teachers in providing broader access to algebraic thinking for more students.

To study teacher noticing of multimodal algebraic thinking, this project will facilitate video club sessions in which teachers examine and annotate classroom video. The video will allow text-based and visual annotation of the videos to obtain rich portraits of the thinking that teachers notice as they examine algebra-related middle school practice. The research team will create a video library focused on three main algebraic thinking areas: equality, functional thinking, and proportional reasoning. Clips will be chosen that feature multimodal student thinking about these content areas, and provide moments that would be fruitful for advancing student thinking. Two cohorts of preservice teachers will engage in year-long video clubs using this video library, annotate videos using an advanced technological tool, and engage in reflective interviews about their noticing practices. Follow-up classroom observations will be conducted to see how teachers then notice multimodal algebraic thinking in their classrooms. Materials to conduct the video clubs in other contexts and the curated video library will be made available, along with analyses of the teacher learning that resulted from their implementation.

CAREER: Promoting Equitable and Inclusive STEM Contexts in High School

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes.

Award Number: 
1941992
Funding Period: 
Sat, 02/01/2020 to Fri, 01/31/2025
Full Description: 

This project focuses on fostering equitable and inclusive STEM contexts with attention to documenting and reducing adolescents' experiences of harassment, bias, prejudice and stereotyping. An important barrier to persistence in STEM fields for marginalized groups, including women and ethnic minorities, relates to a culture in many STEM organizations, such as academic institutions, that fosters discrimination, harassment and prejudicial treatment of those from underrepresented groups. This research will contribute to understanding of the current STEM educational climates in high schools and will help to identify factors that promote resilience in the STEM contexts, documenting how K-12 educators can structure their classrooms and schools to foster success of all students in STEM classes. Further, this work will explore how to create schools where students stand-up for each other and support each other so that any student who is interested will feel welcome in STEM classes and programs.

This research aims to examine cultures of discrimination and harassment in STEM contexts with attention to: 1) assessing STEM climates in high schools in order to identify the character of discrimination and harassment, 2) understanding how youth think about these instances of bias and discrimination; 3) identifying pathways to resilience for underrepresented youth pursuing STEM interests, and 4) testing an intervention to promote bystander intervention from those who witness discrimination and harassment in STEM contexts. This research will take an intersectional approach recognizing that those who are marginalized by multiple dimensions of their identity may experience STEM contexts differently than those who are marginalized by one dimension of their identity. Because adolescence is a critical developmental period during which youth are forming their attitudes, orientations and lifelong behaviors, this research will attend to issues of bias and discrimination well before individuals enter college STEM classrooms or the STEM workforce: namely, during high school. Further, this work will examine the creation of equitable STEM climates in both college-preparation classes as well as workforce development STEM programs offered though or in partnership with high schools. This research will provide clear evidence to document the current culture of STEM contexts in high schools, using mixed methods, including surveys, qualitative interviews and longitudinal measurement. Further, the project will involve development and implementation of an intervention, which will provide the first test of whether bystander intervention can be fostered in STEM students and will involve training STEM students in key 21st century skills, such as social-cognitive capacities and interpersonal skills, enabling them to speak up and support peers from marginalized backgrounds when they observe discrimination and harassment.

CAREER: Spreading Computational Literacy Equitably via Integration of Computing in Preservice Teacher Preparation

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

Lead Organization(s): 
Award Number: 
1941642
Funding Period: 
Wed, 07/01/2020 to Mon, 06/30/2025
Full Description: 

Understanding and creating computer-powered solutions to professional and personal problems enables people to be safe, resourceful, and inventive in the technology-infused world. To empower society, K-12 education is rapidly changing to spread computational literacy. To spread literacy equitably, schools must give all students opportunities to understand and design computing solutions. However, school schedules are already packed with required coursework, and most teachers graduated from programs that did not offer computer science courses. To spread computational literacy within the K-12 system, this project will integrate computing into all preservice teacher programs at Georgia State University. This approach enables all teachers, regardless of primary discipline or grade band, to introduce their students to authentic computing solutions within their discipline and use these solutions as powerful tools for teaching disciplinary content and practices. In addition, this approach ensures equity because all preservice teachers will learn to use computing tools through their regular coursework, rather than a self-selected group that chooses to engage in elective courses or professional development on the topic. The project will also require preservice teachers to use computing-integrated activities in their student teaching experiences. This requirement helps teachers gain the confidence to use the activities in their future classrooms and immediately benefits students in the Atlanta area, who are primarily from groups that are underrepresented in computing, including women, people of color and those who are from low-income families.

This project will study the effect of computing integration in preservice teacher programs on computational literacy. Preservice teacher programs, like K-12 school schedules, are loaded with subject area, pedagogy, and licensure requirements. Therefore, research needs to examine the most sustainable methods for integrating computing into these programs. The proposed project will use design-based research to explore 1) how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and 2) which computing concepts are most valuable for general computational literacy. Because computational literacy is a relatively new literacy, the computing education community still debates which concepts are foundational for all citizens. By studying computing integration in a range of grade bands and subject areas, this project will explore which computing concepts are applicable in a wide range of subjects. These research activities will feed directly into the teaching objective of this project ? to provide computing education and computational literacy to all preservice teachers. This project will prepare about 1500 preservice teachers (more than half of them will be women) across all grades and subject areas who can teach computing integrated activities.

 

PBS NewsHour Student Reporting Labs StoryMaker: STEM-Integrated Student Journalism

In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. The project aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people.

Project Email: 
Award Number: 
1908515
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
Full Description: 

PBS NewsHour's Student Reporting Labs (SRL) is a youth journalism program that creates transformative educational experiences through video production and community engagement. The program aims to produce unique STEM stories from a teen perspective and partners with local public media stations to provide mentorship and amplify the voices of young people. In this project, Student Reporting Labs will develop an online curriculum delivery platform called StoryMaker and a unique set of tools called Storymaker:STEM that will supply in-demand interdisciplinary, multi-modal, STEM-infused teaching and learning tools to classrooms across the country. SRL StoryMaker:STEM will be a free, self-directed online curriculum delivery system designed to guide educators working with middle and high school-age students through videojournalism experiences that highlight and integrate STEM skills, concepts, issues, and potential solutions into the learning process. This program will also develop mentoring connections with 40 journalism professionals and STEM professionals to provide supports for participating teachers and students. The project will recruit and work with about 100 teachers and their students over the course of the project to inform, test, implement and provide feedback on the SRL StoryMaker:STEM platform and resources. The associated research will explore evidence-based strategies for structuring co-learning and mentorship connections for students and teachers with journalists and science content experts around SRL StoryMaker:STEM to best support student and teacher outcomes.

The four-year associated research study will contribute to understanding how teachers collaborate on teaching STEM across academic disciplines through a series of interviews, surveys, and site visits with the pilot teachers and their students using SRL StoryMaker:STEM. The analysis of the data will focus on identifying the benefits of developing a community of teachers who collaborate on teaching STEM across the academic discipline through journalism practice. Specifically, a combination of quantitative and qualitative methods will be used to examine the following research questions: What teacher affordances are necessary for using journalism practices to support STEM learning across academic disciplines? How do teacher perceptions of their school constraints influence their use of STEM-based learning activities? How do teachers from different disciplines teach numerical reasoning, communicating with data, and the other essential STEM thinking skills? How might an online support community be structured to encourage teacher-to-teacher scaffolding related to STEM content given variation in their pedagogical training? Meanwhile, front-end evaluation will identify barriers and opportunities specific to this project. Formative evaluation will focus on how each specific iteration is meeting teachers' needs and aspirations, and summative evaluation will examine teachers' STEM learning and teachers' perception of students' STEM outcomes.

Alternative video text
Alternative video text: 

Improving Evaluations of R&D in STEM Education

The primary goal of this set of workshops is to provide STEM education researchers with the framework, skills, and community they need to implement new developments in causal inference methods into their research.

Project Email: 
Lead Organization(s): 
Award Number: 
1937719
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Project Evaluator: 
Full Description: 

The primary goal of this set of workshops is to provide STEM education researchers with the framework, skills, and community they need to implement new developments in causal inference methods into their research. These methods will be immediately implementable in their current (or near future) studies and will result in stronger causal findings, providing higher-quality evidence regarding the potential of new innovations to improve STEM education broadly. Additionally, a secondary goal is to provide the graduate assistants at the workshop (students in statistics) with a strong foundation in the real-world problems facing researchers in STEM education today. By being immersed in this community, the goal is to improve their communication skills, while also providing them with opportunities to develop new methods that address problems facing the STEM education community today.

STEM education research and development studies often focus on the development and iterative refinement of interventions meant to increase STEM participation and skills. Since large-scale randomized experiments are not often possible, researchers typically use correlational methods instead to explore the effects of interventions. Over the past several years, however, statisticians have developed a broad array of methods for understanding causality that do not require these large-scale randomized trials. While these causal inference methods are now common in fields like medicine and education policy, they are much less commonly found in STEM education fields. The purpose of this set of workshops is to introduce STEM education researchers to these methods and how they relate to three research designs they already use: (1) matching on a single variable (e.g., age, gender), (2) pre-test post-test comparisons, and (3) lab experiments. In addition to introducing these new developments, broader discussions of confounding, validity types and trade-offs, design sensitivity, effect size reporting, and questionable research practices (e.g., p-hacking) will also be included.

Alternative video text
Alternative video text: 

Fusing Equity and Whole-School STEM Models: A Conference Proposal

This project will plan, implement, and evaluate the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level.

Lead Organization(s): 
Award Number: 
1907751
Funding Period: 
Thu, 08/01/2019 to Fri, 07/31/2020
Full Description: 

Interest in whole-school STEM education models is rapidly expanding in the United States, but there is limited agreement on the essential features of effective STEM schools and a limited research base on effective practices. There are also concerns regarding equity issues associated with whole-school STEM models. This project will address these issues by planning, implementing, and evaluating the outcomes of an invitational conference on the role of equity in whole-school STEM education models, particularly Inclusive STEM Schools (ISS), at the high school level. The conference will include 25 invited participants who have expertise as researchers or practitioners in equity issues or whole-school STEM reform efforts. These participants will discuss how to: 1) Create a collective understanding among a community of stakeholders regarding the role of equity in whole-school STEM models, 2) Map, synthesize, and report the terrain of existing research around the role of equity in whole-school STEM and non-STEM models including both strengths and gaps in the research base, and 3) Identify central issues and questions that can guide future research in order to prioritize these topics and initiate productive collaborations among participants to pursue answers to critical questions. These discussions will result in two key outcomes: 1) A practitioner centered logic model that integrates equity into the design and implementation of STEM at the whole-school level, and 2) A research model that supports building an empirical understanding of the intersection between equity and whole-school STEM programs.

There are various models of STEM-centered schools, with the most significant difference across models being the enrollment criteria. This project will focus on Inclusive STEM Schools which have open enrollment and provide paths for all students to advanced learning or careers in STEM fields. Federal initiatives have promoted and supported expansion of these schools, but there is little research on the impacts of these schools, and even less research on the role of equity considerations on the design and implementation of these schools. This project will address the limited research base by focusing specifically on culturally relevant and culturally responsive programing for inclusive STEM schools and initiating a research agenda on the role of equity in designing inclusive STEM programs. The project will seek to identify effective practices, and document outcomes on diverse populations.

Human Variance and Assessment for Learning Implications for Diverse Learners of STEM: A National Conference

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests.

Lead Organization(s): 
Award Number: 
1939192
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The conference purpose is to stimulate a national conversation concerning the relationships between assessment, teaching and learning that include scholarly research and development of tests; members of city and state boards of education; officials from states and major school systems; policymakers; and representatives of teachers' associations and parents' associations. This conference aims to attract these important professionals has important co-sponsors like the Urban Institute. This national conference flows from the work of the Gordon Commission on the Future of Assessment for Education that addressed the advancement of achievement in STEM disciplines (PreK-12) for students who are underrepresented among high achieving students. This issue of advancement of underrepresented high achieving students has received little concentrated effort and a conference would help in providing greater understanding of this special concern, which includes a student in poverty in complexed family structures.

The conference will attract thought leaders, policy makers, supervisors of practice and scholars of measurement science to be informed of emerging thought and developments and to discuss selected models for the implementation of new ways of generating and utilizing data from education tests. The conference will stimulate national conversation and ultimately a market that demands educational assessments that inform and improve teaching and learning transactions. The conference will be organized around four conceptual and theoretical papers that focus on the knowledge base upon which six concurrent workshops will be based. The four papers are: (1) Human Diversity and Assessment; (2) The Limits of Test Bias and Its Corrections; (3) Towards an Assessment Science Capable of Informing and Improving Learning; and  (4) Assessment in the Service of Learning. The workshops will focus on models of pedagogical practice that show promise for informing and improving teaching and learning processes and their outcomes. These issues will be discussed by 11-15 expert presenters who understand student learning and the types of information gleaned from different types of assessments. The attention to URMs and their needs and contexts are prioritized in discussions surrounding measurement science and the integration of assessment. Several important issues that address understanding of student learning, and the relationship between the varieties of information concerning students that can be accessed through assessments are: (1) The importance of the broader and more productive use of educational testing to improve the learning of STEM subject matter and values; (2) Curriculum embedded assessment and the reduction in disparities in achievement by STEM learners from diverse social divisions; (3) Innovative procedures and programs for the use of data concerning learners and teaching and learning transactions in the teaching and learning of STEM with learners who are underrepresented among high achieving STEM learners.

Pages

Subscribe to Technology