Earth/Environmental Science

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Lehrer)

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

Lead Organization(s): 
Award Number: 
2010207
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

There is an ongoing need to find ways to make science relevant for school students and an increasing need to support student interpretation of large data sets. This project addresses these needs by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts. Students construct and critique models that they and peers invent and, through the lens of models, develop foundational knowledge about the roles of variability and change in ecosystem functioning, as well as the roles of models and argumentation in scientific practice. The context for students' work is a set of citizen science-based investigations of changes in ecosystems in Maine conducted in twelve collaborating classrooms. The project studies how and to what extent students' use of different forms of modeling emerges from and informs how they investigate ecosystems. A parallel research effort investigates how and to what extent the development of teachers' comfort and proficiency with modeling changes students' engagement in these forms of modeling and students' understandings of ecosystems. A key contribution of the project is capitalizing on the Gulf of Maine Research Institutes's Ecosystem Investigation Network's citizen science field research to ground for middle school students the need to invent, revise, and contest models about real ecosystems. The understandings that result from the project's research provide evidence toward first, scaling the learning experiences to the network of 500+ teachers who are part of the Ecosystem Investigation Network, and, second, replication by programs nationally that aim to engage students in data-rich, field-based ecological investigations.

The investigation takes place in twelve collaborating middle-school classrooms, drawn from the network of 500+ Maine teachers trained in Maine's Ecosystem Investigation Network. Over the course of their field investigations, students engage in the construction, critique, and revision of three forms of modeling that play central roles in ecology: microcosms, system dynamics, and data modeling. Two innovations are introduced over the course of the project. The first is focused on enriching classroom supports for engaging in multiple forms of modeling. The second involves enhancing middle school teachers' learning about modeling, especially in the context of large data citizen science investigations. The study uses a mixed methods approach to explore the impact of the innovations on the experiences and understandings of both teachers and students. Instruments include teacher interviews and questionnaires, student interviews, and classroom observation. The understandings that result from the project's research will inform the design of professional development for teachers around data analysis and interpretation, and around how student understanding of modeling develops with sustained support, both of which are practices at the heart of scientific literacy.

Developing a Modeling Orientation to Science: Teaching and Learning Variability and Change in Ecosystems (Collaborative Research: Peake)

This project addresses the need to make science relevant for school students and to support student interpretation of large data sets by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts.

Partner Organization(s): 
Award Number: 
2010119
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

There is an ongoing need to find ways to make science relevant for school students and an increasing need to support student interpretation of large data sets. This project addresses these needs by leveraging citizen science data about ecology and developing instruction to support student analyses of these data. This collaboration between Gulf of Maine Research Institute, Bowdoin College and Vanderbilt University engages middle-school students in building and revising models of variability and change in ecosystems and studies the learning and instruction in these classroom contexts. Students construct and critique models that they and peers invent and, through the lens of models, develop foundational knowledge about the roles of variability and change in ecosystem functioning, as well as the roles of models and argumentation in scientific practice. The context for students' work is a set of citizen science-based investigations of changes in ecosystems in Maine conducted in twelve collaborating classrooms. The project studies how and to what extent students' use of different forms of modeling emerges from and informs how they investigate ecosystems. A parallel research effort investigates how and to what extent the development of teachers' comfort and proficiency with modeling changes students' engagement in these forms of modeling and students' understandings of ecosystems. A key contribution of the project is capitalizing on the Gulf of Maine Research Institutes's Ecosystem Investigation Network's citizen science field research to ground for middle school students the need to invent, revise, and contest models about real ecosystems. The understandings that result from the project's research provide evidence toward first, scaling the learning experiences to the network of 500+ teachers who are part of the Ecosystem Investigation Network, and, second, replication by programs nationally that aim to engage students in data-rich, field-based ecological investigations.

The investigation takes place in twelve collaborating middle-school classrooms, drawn from the network of 500+ Maine teachers trained in Maine's Ecosystem Investigation Network. Over the course of their field investigations, students engage in the construction, critique, and revision of three forms of modeling that play central roles in ecology: microcosms, system dynamics, and data modeling. Two innovations are introduced over the course of the project. The first is focused on enriching classroom supports for engaging in multiple forms of modeling. The second involves enhancing middle school teachers' learning about modeling, especially in the context of large data citizen science investigations. The study uses a mixed methods approach to explore the impact of the innovations on the experiences and understandings of both teachers and students. Instruments include teacher interviews and questionnaires, student interviews, and classroom observation. The understandings that result from the project's research will inform the design of professional development for teachers around data analysis and interpretation, and around how student understanding of modeling develops with sustained support, both of which are practices at the heart of scientific literacy.

Geological Construction of Rock Arrangements from Tectonics: Systems Modeling Across Scales

This project will create two curriculum units that use sophisticated simulations designed for students in secondary schools that integrate the study of the tectonic system and the rock genesis system. The project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic.

Lead Organization(s): 
Award Number: 
2006144
Funding Period: 
Thu, 10/01/2020 to Mon, 09/30/2024
Full Description: 

Plate tectonics is the fundamental theory of geology that underlies almost all geological processes, including land and rock formation. However, the geologic processes and immense timeframes involved are often misunderstood. This study will create two curriculum units that use sophisticated simulations designed for students in secondary schools. The simulations will integrate the study of the tectonic system and the rock genesis system. Data from the simulations would be students' sources of evidence. For instance, the Tectonic Rock Explorer would use a sophisticated modeling engine that uses the physics involved in geodynamic data to represent compressional and tensional forces and calculate pressure and temperature in rock forming environments. This project seeks to overcome the more typical approaches taken in earth science classrooms where such geologic processes are treated as discrete and highly predictable, rather than intertwined and dynamic. In addition, this study would include work on students with disabilities in earth science classrooms and explore the practices that seem to be particularly useful in helping understand these systems. By working with simulations, the researchers intend to engage students in scientific practices that are more authentic to the ways that geologists work. The researchers will study if and how these simulations and the computer-based tools allow students to observe and manipulate processes that would be may otherwise be inaccessible.

This work follows on from prior work done by the Concord Consortium on simulations of earth systems. The design and development progression in Years 1 and 2 would create two units. The first module focuses on the relationship between tectonic movement and rock formation. The second would investigate geochronology and dating of rock formations. The researchers would work with 3 teachers (and classes), and then 15 teachers (and classes) using automated data logs, class observations, and video of students working in groups in Years 1 and 2. Professional development for teachers would be followed by the creation of educative materials. Researchers will also develop the framework for an assessment tool that includes understanding of geologic terms and embedded assessments. The researchers will used a mixed methods approach to analyze student data, including analyses cycles of analysis of students pre- and post-test scores on targeted concepts, reports of student performances on tasks embedded in the simulations, and the coding of videos to analyze discourse between partners and the supports provided by teachers. Teacher data will be analyzed using interviews, surveys and journals, with some special focus on how they are seeing students with identified disabilities respond to the materials and simulations. The research team intends to make materials widely available to thousands of students through their networks and webpages, and pursue outreach and dissemination in scholarly and practitioner conferences and publications.

Supporting Students' Language, Knowledge, and Culture through Science

This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

Lead Organization(s): 
Award Number: 
2010633
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

The Language, Culture, and Knowledge-building through Science project seeks to explore and positively influence the work of science teachers at the intersection of three significant and ongoing challenges affecting U.S. STEM education. First, U.S. student demographics are rapidly changing, with an increasing number of students learning STEM subjects in their second language. This change means that all teachers need new skills for meeting students where they currently are, linguistically, culturally, and in terms of prior science knowledge. Second, the needs and opportunities of the national STEM workforce are changing rapidly within a shifting employment landscape. This shift means that teachers need to better understand future job opportunities and the knowledge and skills that will be necessary in those careers. Third, academic expectations in schools have changed, driven by changes in education standards. These new expectations mean that teachers need new skills to support all students to master a range of practices that are both conceptual and linguistic. To address these challenges, teachers require new models that bring together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. This project begins with such an initial model, developed collaboratively with science teachers in a prior project. The model will be rigorously tested and refined in a new geographic and demographic context. The outcome will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

This project model starts with three theoretical constructs that have been integrated into an innovative framework of nine practices. These practices guide teachers in how to simultaneously support students' language development, cultural sustenance, and knowledge building through science with a focus on supporting and challenging multilingual learners. The project uses a functional view of language development, which highlights the need to support students in understanding both how and why to make shifts in language use. For example, students' attention will be drawn to differences in language use when they shift from language that is suited to peer negotiation in a lab group to written explanations suitable for a lab report. Moving beyond a funds of knowledge approach to culture, the team view of integrating students' cultural knowledge includes strengthening the role of home knowledge in school, but also guiding students to apply school knowledge to their out-of-school interests and passions. Finally, the project team's view of cumulative knowledge building, informed by work in the sociology of knowledge, highlights the need for teachers and students to understand the norms for meaning making within a given discipline. In the case of science, the three-dimensional learning model in the Next Generation Science Standards makes these disciplinary norms visible and serves as a launching point for the project's work. Teachers will be supported to structure learning opportunities that highlight what is unique about meaning making through science. Using a range of data collection and analysis methods, the project team will study changes in teachers' practices and beliefs related to language, culture and knowledge building, as teachers work with all students, and particularly with multilingual learners. The project work will take place in both classrooms and out of class science learning settings. By working closely over several years with a group of fifty science teachers spread across the state of Oregon, the project team will develop a typology of teachers (design personas) to increase the field's understanding of how to support different teachers, given their own backgrounds, in preparing all students for the broad range of academic and occupational pathways they will encounter.

Supporting Elementary Teacher Learning for Effective School-Based Citizen Science (TL4CS)

This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.

Lead Organization(s): 
Award Number: 
2009212
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Citizen science involves individuals, who are not professional scientists, in authentic scientific research, typically in collaboration with professional scientists. When implemented well in elementary schools, citizen science projects immerse students in science content and engage them with scientific practices. These projects can also create opportunities for students to connect with their local natural surroundings, which is needed, as some research has suggested that children are becoming increasingly detached from nature. The classroom teacher plays a critical role in ensuring that school-based citizen science projects are implemented in a way that maximizes the benefits. However, these projects typically do not include substantial guidance for teachers who want to implement the projects for instructional purposes. This project will develop two forms of support for teachers: (1) guidance embedded in citizen science project materials and (2) teacher professional development. It will develop materials and professional development experiences to support teacher learning for 80 5th grade teachers impacting students in 40 diverse elementary schools.

The overarching goal of this project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making. Specifically, the study is designed to address the following research questions: (1) What kinds of support foster teacher learning for enacting effective school-based citizen science? (2) How do supports for teacher learning shape the way teachers enact school-based citizen science? and (3) What is the potential of school-based citizen science for positively influencing student learning and student attitudes toward nature and science? Data collected during project implementation will include teacher surveys, student surveys and assessments, and case study protocols.

Exploring Early Childhood Teachers' Abilities to Identify Computational Thinking Precursors to Strengthen Computer Science in Classrooms

This project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project team will design a replicable model of PK-2 teacher professional development to address the lack of research in early computer science education.

Lead Organization(s): 
Award Number: 
2006595
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

Strengthening computer science education is a national priority with special attention to increasing the number of teachers who can deliver computer science education in schools. Yet computer science education lacks the evidence to determine how teachers come to think about computational thinking (a problem-solving process) and how it could be integrated within their day-to-day classroom activities. For teachers of pre-kindergarten to 2nd (PK-2) grades, very little research has specifically addressed teacher learning. This oversight challenges the achievement of an equitable, culturally diverse, computationally empowered society. The project team will design a replicable model of PK-2 teacher professional development in San Marcos, Texas, to address the lack of research in early computer science education. The model will emphasize three aspects of teacher learning: a) exploration of and reflection on computer science and computational thinking skills and practices, b) noticing and naming computer science precursor skills and practices in early childhood learning, and c) collaborative design, implementation and assessment of learning activities aligned with standards across content areas. The project will explore PK-2 teachers' content knowledge by investigating their understanding of the design and implementation of culturally relevant computer science learning activities for young children. The project includes a two-week computational making and inquiry institute focused on algorithms and data in the context of citizen science and historical storytelling. The project also includes monthly classroom coaching sessions, and teacher meetups.

The research will include two cohorts of 15 PK-2 teachers recruited from the San Marcos Consolidated Independent School District (SMCISD) in years one and two of the project. The project incorporates a 3-phase professional development program to be run in two cycles for each cohort of teachers. Phase one (summer) includes a 2-week Computational Making and Inquiry Institute, phase two (school year) includes classroom observations and teacher meetups and phase three (late spring) includes an advanced computational thinking institute and a community education conference. Research and data collection on impacts will follow a mixed-methods approach based on a grounded theory design to document teachers learning. The mixed-methods approach will enable researchers to triangulate participants' acquisition of new knowledge and skills with their developing abilities to implement learning activities in practice. Data analysis will be ongoing, interweaving qualitative and quantitative methods. Qualitative data, including field notes, observations, interviews, and artifact assessments, will be analyzed by identifying analytical categories and their relationships. Quantitative data includes pre to post surveys administered at three-time points for each cohort. Inter-item correlations and scale reliabilities will be examined, and a repeated measures ANOVA will be used to assess mean change across time for each of five measures. Project results will be communicated via peer-reviewed journals, education newsletters, annual conferences, family and teacher meetups, and community art and culture events, as well as on social media, blogs, and education databases.

Enhancing Energy Literacy through Place-based Learning: Using the School Building to Link Energy Use with Earth Systems

This exploratory project will design, pilot, and evaluate a 10-weeek, energy literacy curriculum unit for a program called Energy and Your Environment (EYE). In the EYE curriculum, students will study energy use and transfer in their own school buildings. They will explore how Earth systems supply renewable and nonrenewable energy, and how these energy sources are transformed and transferred from Earth systems to a school building to meet its daily energy requirements.

Lead Organization(s): 
Award Number: 
2009127
Funding Period: 
Tue, 09/01/2020 to Thu, 08/31/2023
Full Description: 

Student understanding of energy concepts about Earth systems and human-built systems require grappling with current societal issues related to resource use and management, energy sources, climate impacts, and sustainability. These relationships are challenging for students and underdeveloped in many science curriculum frameworks. This exploratory project will design, pilot, and evaluate a 10-weeek, energy literacy curriculum unit for a program called Energy and Your Environment (EYE). In the EYE curriculum, students will study energy use and transfer in their own school buildings. They will explore how Earth systems supply renewable and nonrenewable energy, and how these energy sources are transformed and transferred from Earth systems to a school building to meet its daily energy requirements. Learning about complex ideas in a place that is common to both students and teachers provides a means for deeper understanding and application of energy use and exchange. The research team includes researchers in biology and in architecture with an emphasis on natural resources and the environment. The researchers will work with four middle school science teachers to develop a curriculum unit that requires deep understanding of energy-systems models, but that will also be designed to apply to the school system and community. This is place-based learning aligned with the Next Generation Science Standards to foster energy literacy, modeling of energy use and flow, and systems thinking.

The research questions for this study will ask about students' ability to construct and explain models about energy use and exchange, as well as about teachers' use of the newly developed instructional materials. The research team will collaborate with 4 middle school teachers to design and test the unit in their classrooms. Data collection includes students' drawn models of the energy systems in use in their school building, student and teacher interviews, classroom observations, and teacher questionnaires. Student understanding of the learning goals will be assessed through a learning performance on energy modeling, and an accompanying rubric to score student models and explanations. After an initial implementation of the unit in classrooms, the following summer, researchers and teachers will meet to revise the curriculum materials. Then, teachers new to the curriculum unit will participate in the professional development required to teach the EYE unit. They will introduce the revised unit to their students in the next year, as researchers collect data and evaluate student learning for the revised curriculum materials. Overall, the project intends to include about 600 middle school students.

Building Environmental and Educational Technology Competence and Leadership Among Educators: An Exploration in Virtual Reality Professional Development

This project will bring locally relevant virtual reality (VR) experiences to teachers and students in areas where there is historically low participation of women and underrepresented minorities in STEM. This exploratory project will support the professional growth and development of current middle and high school STEM teachers by providing multiyear summer training and school year support around environmental sciences themed content, implementing VR in the classroom, and development of a support community for the teachers.

Lead Organization(s): 
Award Number: 
2010563
Funding Period: 
Mon, 06/15/2020 to Wed, 05/31/2023
Full Description: 

Many of the nation's most vulnerable ecosystems exist near communities with scant training opportunities for teachers and students in K-12 schools. The Louisiana wetlands is one such example. Focusing on these threatened natural environments and their connection to flooding will put science, technology, engineering, and mathematics (STEM) concepts in a real-world context that is relatable to students living in these areas while integrating virtual reality technology. This technology will allow students in rural and urban schools lacking resources for field trips to be immersed into simulated field experiences. This exploratory project will support the professional growth and development of current middle and high school STEM teachers by providing multiyear summer training and school year support around three specific areas: (1) environmental sciences themed content; (2) implementing virtual reality (VR) in the classroom, and (3) development of a support community for the teachers. Findings from this project will advance the knowledge of the most effective components in professional development for teachers to incorporate new knowledge into their classrooms. This project will bring locally relevant VR experiences to teachers and students in areas where there is historically low participation of women and underrepresented minorities in STEM. Through new partnerships formed with collaborators, the results of this project will be shared broadly in informal and formal education environments including public outreach events for an increase in public scientific literacy and public engagement.

This project will expand the understanding of the impact that a multi-layered professional development program will have on improving the self-efficacy of teachers in STEM. This project will add to the field's knowledge tied to the overall research question: What are the experiences of secondary STEM teachers in rural and urban schools who participate in a multiyear professional development (PD) program? This project will provide instructional support and PD for two cohorts of ten teachers in southeastern Louisiana. Each summer, teachers will complete a two-week blended learning PD training, and during the academic year, teachers will participate in an action research community including PD meetings and monthly Critical Friends Group meetings. A longitudinal pre-post-post design will be employed to analyze whether the proposed method improves teacher's self-efficacy, instructional practices, integration of technology, and leadership as the teachers will deploy VR training locally to grow the base of teachers integrating this technology into their curriculum. The findings of this project will improve understanding of how innovative place-based technological experiences can be brought into classrooms and shared through public engagement.

Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic.

Lead Organization(s): 
Award Number: 
2030436
Funding Period: 
Fri, 05/15/2020 to Fri, 04/30/2021
Full Description: 

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

This study will collect data using the AmeriSpeak Teen Panel of approximately 2,000 students aged 13 to 17 and the Infinite Campus Student Information System with a sample of approximately 2.5 million high school students. The data sets allow for relevant comparisons of student experiences prior to and during the COVID-19 pandemic and offer unique perspectives with nationally representative samples of U.S. high school students. New data collection will focus on formal and informal STEM learning opportunities, engagement, STEM course taking, the nature and frequency of instruction, interactions with teachers, interest in STEM, and career aspirations. Weighted data will be analyzed using descriptive statistics and within and between district analysis will be conducted to assess group differences. Estimates of between group pandemic learning loss will be provided with attention to demographic factors.

This RAPID award is made by the DRK-12 program in the Division of Research on Learning. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics by preK-12 students and teachers, through the research and development of new innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for the projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

 

 

 

 

Place-Based Learning for Elementary Science at Scale (PeBLES2)

To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena.

Award Number: 
2009613
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

This project investigates how to design instructional resources and supporting professional learning that value rigor and standardization while at the same time creating experiences that help students understand their worlds by connecting to local phenomena, communities, and cultures. Currently, many instructional materials designed for widespread use do not connect to local phenomena, while units that do incorporate local phenomena are often developed from the ground up by community members, requiring extensive time and resources.  To support equitable access to place-based science learning opportunities, the Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested units that meet the expectations of the Next Generation Science Standards (NGSS). The project team will develop two units and associated professional learning that could be used in any region across the country with built-in opportunities for teachers to purposefully adapt curriculum to include local phenomena.

A design based research approach will be used to: 1) iteratively design, test, and revise, two locally adaptable instructional resource packages for Grades 3-5 science; 2) examine how teachers apply unit resources and professional learning experiences to incorporate local phenomena into the curriculum and their teaching; and 3) examine how the process of curriculum adaptation can support teacher understanding of the science ideas and phenomena within the units, teacher agency and self-efficacy beliefs in science teaching, and student perceptions of relevance and interest in science learning. Participating teachers will range from rural and urban settings in California, Colorado, and Maine. Data sources will include instructional logs, teacher surveys, and student electronic exit tickets from 50 classrooms per unit as well as teacher interviews, classroom observations, and student focus groups from six exemplar case study teachers per unit. Evaluation of the project will focus on monitoring the (1) quality of the research and development components, (2) quality of program implementation to inform program improvement and future implementation, and (3) potential of scaling up the program to other sites and organizations. The design and research from this project will advance the field’s knowledge about how to design instructional materials and professional learning experiences that meet the expectations of the NGSS while also empowering teachers to adapt materials in productive ways, drawing on locally or culturally relevant phenomena.

Pages

Subscribe to Earth/Environmental Science