Biology

SimSnap: Orchestrating Collaborative Learning in Biology through Reconfigurable Simulations (Collective Research: Puntambekar)

This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.

Award Number: 
2010357
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands. Working within a digital plant habitat simulation, students will investigate how different environmental and genetic factors affect the health of a variety of plants and vegetables. As students engage in design tasks, they will be able to seamlessly move between individual and collaborative work with peers by "snapping" their tablets together (by placing them next to each other) to create a single shared simulation that spans all their devices. Students will be able to drop elements of their individual inquiry activities (e.g., plant types, soil compositions) into their shared simulation, providing opportunities for collaborative discussion and knowledge integration. When students "unsnap" their tablets, their collaborative work will stay with them in a digital journal, for individual reflection or as a resource for future collaborative activities (with potentially new group members). Project curriculum units will help students see the connections between the science concepts and principles they are learning, as they iteratively work on their designs through a combination of individual, collaborative and whole class learning. This work will also develop new approaches that help teachers understand the state of the class when students are taking part open-ended biology investigations, and support the teacher classroom orchestration and facilitation. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website.

The project will research collaborative learning along three planesindividual, small group and whole classwith technologies and classroom teachers supporting learning in innovative ways. Research has shown that technology can support collaborative learning, but there is limited research on how it can support transitions between individual and collaborative learning. While research has also shown that collaborative or individual learning may be more beneficial depending on the task or learning goal, there are relatively few studies that examine the potential for learning when students move between these social planes. Further, as these configurations become increasingly complex, there is also the challenge of how to support teachers' orchestration and facilitation. Studies will focus around four main research questions: 1) How does engaging in personally relevant biology curriculum through user-driven investigations help students understand the underlying science content? 2) How are students using and sharing the work of others to develop their own understanding about the underlying science concepts? 3) How do designs that allow for the movement between individual, small group, and whole class configurations allow students to work as a learning community? 4) How does the technology platform support teachers in orchestrating and facilitating classroom activities? Project studies will follow a design-based research methodology, guided by the premise that learning in naturalistic settings is the product of multiple interacting variables that cannot be reduced to a small set of controlled factors. The research will be broken down across four main developmental arcs: Technology design and iteration; Facilitation, user testing, and co-design; Classroom implementation; and Research and analysis. Each of the designed technologies will be user tested in the lab prior to being deployed in the classroom. Part of the analysis will focus on how the different technologies (i.e., individual and connected tablets, the teacher orchestration tablet) support learning and collaboration in naturalistic settings. The project research framework provides a way to examine the usability, usefulness and impact of interactions in a multi-user collaborative context using a mixed-method approach with various quantitative measures and qualitative indicators. Teachers will be prepared to use the system through 2-week summer institutes, during which they will also participate in co-design of the curriculum and the technology. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website, as well as being disseminated to appropriate audiences via conference presentations and publications.

SimSnap: Orchestrating Collaborative Learning in Biology through Reconfigurable Simulations (Collective Research: Tissenbaum)

This project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands.

Award Number: 
2010456
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

The project will develop and research collaborative learning in biology using tablet-style computers that support simulations of biological systems and that can be used individually or linked together. The project will be implemented over 4 years in middle school life science classes, in which students will solve important socio-scientific problems, such as growing healthy plants in community gardens to address the need to grow sufficient produce to fulfill ever increasing and varying demands. Working within a digital plant habitat simulation, students will investigate how different environmental and genetic factors affect the health of a variety of plants and vegetables. As students engage in design tasks, they will be able to seamlessly move between individual and collaborative work with peers by "snapping" their tablets together (by placing them next to each other) to create a single shared simulation that spans all their devices. Students will be able to drop elements of their individual inquiry activities (e.g., plant types, soil compositions) into their shared simulation, providing opportunities for collaborative discussion and knowledge integration. When students "unsnap" their tablets, their collaborative work will stay with them in a digital journal, for individual reflection or as a resource for future collaborative activities (with potentially new group members). Project curriculum units will help students see the connections between the science concepts and principles they are learning, as they iteratively work on their designs through a combination of individual, collaborative and whole class learning. This work will also develop new approaches that help teachers understand the state of the class when students are taking part open-ended biology investigations, and support the teacher classroom orchestration and facilitation. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website.

The project will research collaborative learning along three planesindividual, small group and whole classwith technologies and classroom teachers supporting learning in innovative ways. Research has shown that technology can support collaborative learning, but there is limited research on how it can support transitions between individual and collaborative learning. While research has also shown that collaborative or individual learning may be more beneficial depending on the task or learning goal, there are relatively few studies that examine the potential for learning when students move between these social planes. Further, as these configurations become increasingly complex, there is also the challenge of how to support teachers' orchestration and facilitation. Studies will focus around four main research questions: 1) How does engaging in personally relevant biology curriculum through user-driven investigations help students understand the underlying science content? 2) How are students using and sharing the work of others to develop their own understanding about the underlying science concepts? 3) How do designs that allow for the movement between individual, small group, and whole class configurations allow students to work as a learning community? 4) How does the technology platform support teachers in orchestrating and facilitating classroom activities? Project studies will follow a design-based research methodology, guided by the premise that learning in naturalistic settings is the product of multiple interacting variables that cannot be reduced to a small set of controlled factors. The research will be broken down across four main developmental arcs: Technology design and iteration; Facilitation, user testing, and co-design; Classroom implementation; and Research and analysis. Each of the designed technologies will be user tested in the lab prior to being deployed in the classroom. Part of the analysis will focus on how the different technologies (i.e., individual and connected tablets, the teacher orchestration tablet) support learning and collaboration in naturalistic settings. The project research framework provides a way to examine the usability, usefulness and impact of interactions in a multi-user collaborative context using a mixed-method approach with various quantitative measures and qualitative indicators. Teachers will be prepared to use the system through 2-week summer institutes, during which they will also participate in co-design of the curriculum and the technology. Project research findings, materials and software will be made available to interested teachers, administrators, policymakers, and researchers nationwide on the project website, as well as being disseminated to appropriate audiences via conference presentations and publications.

Developing Teachers' Epistemic Cognition and Teaching Practices for Supporting Students' Epistemic Practices with Scientific Systems

This project uses a new theoretical framework that specifies criteria for developing scientific thinking skills that include the value that people place on scientific aims, the cognitive engagement needed to evaluate scientific claims, and the scientific skills that will enable one to arrive at the best supported explanation of a scientific phenomenon.

Lead Organization(s): 
Award Number: 
2009803
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

This project aims to investigate needs and challenges in developing an informed public able to evaluate empirical evidence generated from scientific activities. At the core of this research are two intertwined issues: (1) epistemic practices--how people acquire knowledge of science and how they evaluate knowledge sources; and (2) how people improve their abilities to evaluate these knowledge sources so as to improve their abilities to develop and use scientific knowledge. While much science education research has focused on helping students develop these abilities such as through scientific argumentation and modeling (hereafter referred to as scientific thinking), much less research has focused on how teachers acquire this understanding and how their understanding informs their instruction. Until recently, the science education field has lacked a comprehensive framework to support the acquisition, evaluation, and use of scientific knowledge sources. This project uses a new theoretical framework that specifies criteria for developing these scientific thinking skills that include, among others, the value that people place on scientific aims, the cognitive engagement needed to evaluate scientific claims, and the scientific skills that will enable one to arrive at the best supported explanation of a scientific phenomenon. The project will work with high school biology teachers to investigate their own understanding of scientific thinking, how it can be improved through professional development, and how this improvement can translate into practice to support student learning.

The project will work with 20 teachers and classrooms that will impact approximately 1500 to 3000 students. Teachers will act as design collaborators in three iterations of design and development activities with a goal to produce effective professional development supports with proven student outcomes that can be broadly disseminated. Data collection each year will entail: (1) 40 to 60 video-recordings of teacher instruction and student interactions; (2) Content and pedagogical content knowledge surveys from teachers and students; (3) Teacher pre- and post-interviews; and (4) Teacher and student artifacts that demonstrate the extent to which scientific thinking has been achieved. The data will be analyzed through a mixed-methods approach. Qualitative data will be analyzed through validated coding manuals that specify a range of abilities in scientific thinking. Likert-scale and open-ended survey questions will be used to measure changes in instruction and learning outcomes in various factors related to the research goals.

Supporting Students' Language, Knowledge, and Culture through Science

This project will test and refine a teaching model that brings together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. The outcome of this project will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

Lead Organization(s): 
Award Number: 
2010633
Funding Period: 
Tue, 09/01/2020 to Sat, 08/31/2024
Full Description: 

The Language, Culture, and Knowledge-building through Science project seeks to explore and positively influence the work of science teachers at the intersection of three significant and ongoing challenges affecting U.S. STEM education. First, U.S. student demographics are rapidly changing, with an increasing number of students learning STEM subjects in their second language. This change means that all teachers need new skills for meeting students where they currently are, linguistically, culturally, and in terms of prior science knowledge. Second, the needs and opportunities of the national STEM workforce are changing rapidly within a shifting employment landscape. This shift means that teachers need to better understand future job opportunities and the knowledge and skills that will be necessary in those careers. Third, academic expectations in schools have changed, driven by changes in education standards. These new expectations mean that teachers need new skills to support all students to master a range of practices that are both conceptual and linguistic. To address these challenges, teachers require new models that bring together current research about the role of language in science learning, the role of cultural connections in students' science engagement, and how students' science knowledge builds over time. This project begins with such an initial model, developed collaboratively with science teachers in a prior project. The model will be rigorously tested and refined in a new geographic and demographic context. The outcome will be to provide an integrated framework that can guide current and future science teachers in preparing all students with the conceptual and linguistic practices they will need to succeed in school and in the workplace.

This project model starts with three theoretical constructs that have been integrated into an innovative framework of nine practices. These practices guide teachers in how to simultaneously support students' language development, cultural sustenance, and knowledge building through science with a focus on supporting and challenging multilingual learners. The project uses a functional view of language development, which highlights the need to support students in understanding both how and why to make shifts in language use. For example, students' attention will be drawn to differences in language use when they shift from language that is suited to peer negotiation in a lab group to written explanations suitable for a lab report. Moving beyond a funds of knowledge approach to culture, the team view of integrating students' cultural knowledge includes strengthening the role of home knowledge in school, but also guiding students to apply school knowledge to their out-of-school interests and passions. Finally, the project team's view of cumulative knowledge building, informed by work in the sociology of knowledge, highlights the need for teachers and students to understand the norms for meaning making within a given discipline. In the case of science, the three-dimensional learning model in the Next Generation Science Standards makes these disciplinary norms visible and serves as a launching point for the project's work. Teachers will be supported to structure learning opportunities that highlight what is unique about meaning making through science. Using a range of data collection and analysis methods, the project team will study changes in teachers' practices and beliefs related to language, culture and knowledge building, as teachers work with all students, and particularly with multilingual learners. The project work will take place in both classrooms and out of class science learning settings. By working closely over several years with a group of fifty science teachers spread across the state of Oregon, the project team will develop a typology of teachers (design personas) to increase the field's understanding of how to support different teachers, given their own backgrounds, in preparing all students for the broad range of academic and occupational pathways they will encounter.

Supporting Elementary Teacher Learning for Effective School-Based Citizen Science (TL4CS)

This project will develop two forms of support for teachers: guidance embedded in citizen science project materials and teacher professional development. The overarching goal of the project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making.

Lead Organization(s): 
Award Number: 
2009212
Funding Period: 
Wed, 07/01/2020 to Sun, 06/30/2024
Full Description: 

Citizen science involves individuals, who are not professional scientists, in authentic scientific research, typically in collaboration with professional scientists. When implemented well in elementary schools, citizen science projects immerse students in science content and engage them with scientific practices. These projects can also create opportunities for students to connect with their local natural surroundings, which is needed, as some research has suggested that children are becoming increasingly detached from nature. The classroom teacher plays a critical role in ensuring that school-based citizen science projects are implemented in a way that maximizes the benefits. However, these projects typically do not include substantial guidance for teachers who want to implement the projects for instructional purposes. This project will develop two forms of support for teachers: (1) guidance embedded in citizen science project materials and (2) teacher professional development. It will develop materials and professional development experiences to support teacher learning for 80 5th grade teachers impacting students in 40 diverse elementary schools.

The overarching goal of this project is to generate knowledge about teacher learning that enables elementary school citizen science to support students' engagement with authentic science content and practices through data collection and sense making. Specifically, the study is designed to address the following research questions: (1) What kinds of support foster teacher learning for enacting effective school-based citizen science? (2) How do supports for teacher learning shape the way teachers enact school-based citizen science? and (3) What is the potential of school-based citizen science for positively influencing student learning and student attitudes toward nature and science? Data collected during project implementation will include teacher surveys, student surveys and assessments, and case study protocols.

How Deep Structural Modeling Supports Learning with Big Ideas in Biology (Collaborative Research: Capps)

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010223
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. This need is forcefully advanced by policy leaders including the National Research Council and the College Board. They point out that learning is more effective when students organize and link information within a consistent knowledge framework, which is what big ideas should provide. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology. In DSM, students learn a big idea as the underlying, or "deep" structure of a set of examples that contain the structure, but with varying outward details. As learners begin to apprehend the deep structure (i.e., the big idea) within the examples, they use the tools and procedures of scientific modeling to express and develop it. According to theories of learning that undergird DSM, the result of this process should be a big idea that is flexible, meaningful, and easy to express, thus providing an ideal framework for making sense of new information learners encounter (i.e., learning with the big idea). To the extent that this explanation is born out in rigorous research tests and within authentic curriculum materials, it contributes important knowledge about how teaching and learning can be organized around big ideas, and not only for deep structural modeling but for other instructional approaches as well.

This project has twin research and prototype development components. Both are taking place in the context of high school biology, in nine classrooms across three districts, supporting up to 610 students. The work focuses on three design features of DSM: (1) embedding model source materials with intuitive, mechanistic ideas; (2) supporting learners to abstract those ideas as a deep structure shared by a set of sources; and (3) representing this deep structure efficiently within the model. In combination, these features support students to understand an abstract, intuitively rich, and efficient knowledge structure that they subsequently use as a framework to interpret, organize, and link disciplinary content. A series of five research studies build on one another to develop knowledge about whether and how the design features bring about these anticipated effects. Earlier studies in the sequence are small-scale classroom experiments randomly assigning students to either deep structural modeling or to parallel, non modeling controls. Measures discriminate for the anticipated effects during learning and on posttests. Later studies use qualitative methods to carefully trace the anticipated effects over time and across topics. As a group, these studies are contributing generalized knowledge of how learners can effectively abstract and represent big ideas and how these ideas can be leveraged as frameworks for learning content with understanding. Two research-tested biology curriculum prototypes are being developed as the studies evolve: a quarter-year DSM biology curriculum centered on energy; and an eighth-year DSM unit centered on natural selection.

How Deep Structural Modeling Supports Learning with Big Ideas in Biology (Collaborative Research: Shemwell)

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
2010334
Funding Period: 
Sat, 08/01/2020 to Wed, 07/31/2024
Full Description: 

This project addresses the pressing need to more effectively organize STEM (science, technology, engineering, and mathematics) teaching and learning around "big ideas" that run through science disciplines. This need is forcefully advanced by policy leaders including the National Research Council and the College Board. They point out that learning is more effective when students organize and link information within a consistent knowledge framework, which is what big ideas should provide. Unfortunately, finding ways to teach big ideas effectively so they become useful as knowledge frameworks is a significant challenge. Deep structure modeling (DSM), the innovation advanced in this project, is designed to meet this challenge in the context of high school biology. In DSM, students learn a big idea as the underlying, or "deep" structure of a set of examples that contain the structure, but with varying outward details. As learners begin to apprehend the deep structure (i.e., the big idea) within the examples, they use the tools and procedures of scientific modeling to express and develop it. According to theories of learning that undergird DSM, the result of this process should be a big idea that is flexible, meaningful, and easy to express, thus providing an ideal framework for making sense of new information learners encounter (i.e., learning with the big idea). To the extent that this explanation is born out in rigorous research tests and within authentic curriculum materials, it contributes important knowledge about how teaching and learning can be organized around big ideas, and not only for deep structural modeling but for other instructional approaches as well.

This project has twin research and prototype development components. Both are taking place in the context of high school biology, in nine classrooms across three districts, supporting up to 610 students. The work focuses on three design features of DSM: (1) embedding model source materials with intuitive, mechanistic ideas; (2) supporting learners to abstract those ideas as a deep structure shared by a set of sources; and (3) representing this deep structure efficiently within the model. In combination, these features support students to understand an abstract, intuitively rich, and efficient knowledge structure that they subsequently use as a framework to interpret, organize, and link disciplinary content. A series of five research studies build on one another to develop knowledge about whether and how the design features bring about these anticipated effects. Earlier studies in the sequence are small-scale classroom experiments randomly assigning students to either deep structural modeling or to parallel, non modeling controls. Measures discriminate for the anticipated effects during learning and on posttests. Later studies use qualitative methods to carefully trace the anticipated effects over time and across topics. As a group, these studies are contributing generalized knowledge of how learners can effectively abstract and represent big ideas and how these ideas can be leveraged as frameworks for learning content with understanding. Two research-tested biology curriculum prototypes are being developed as the studies evolve: a quarter-year DSM biology curriculum centered on energy; and an eighth-year DSM unit centered on natural selection.

Responsive Instruction for Emergent Bilingual Learners in Biology Classrooms

This project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science.

Lead Organization(s): 
Award Number: 
2010153
Funding Period: 
Wed, 07/01/2020 to Fri, 06/30/2023
Full Description: 

The population of students who are emergent bilinguals in the US is not only growing in number but also, historically, has been underrepresented in STEM fields. Emergent bilingual students have not had access to the same high-quality science education as their peers, despite bringing rich academic, linguistic and cultural strengths to their learning. Building on smaller pilot studies and ideas that have shown to be successful in supporting emergent bilingual students' learning of elementary science, this project seeks to support emergent bilingual students in high school biology classrooms. The project team will study how teachers make sense of and use an instructional model that builds on students' cultural and linguistic strengths to teach biology in ways that are responsive. The team will also study how such a model impacts emergent bilingual students' learning of biology and scientific language practices, as well as how it supports students' identities as knowers/doers of science. The collaboration will include two partner districts that will allow the project work to impact about 11,000 high school students and 30 biology teachers in Florida. Over time, the project team plans to enact and study three cohorts of teachers and students; use the information learned to improve the instructional model; and develop lessons, a website, and other materials that can be applied to other contexts to support emergent bilingual students' learning of biology. This project will increase emergent bilingual students' participation in biology classes, improve their achievement and engagement in science and engineering practices, extend current research-based practices, and document how to build on emergent bilingual students' strengths and prior experiences.

In two previous pilot studies through the collaboration of an interdisciplinary team, the project team developed an instructional model that they found supported emergent bilingual students to have high-quality opportunities for science learning. The model builds on research related to culturally responsive instruction; funds of knowledge (including work on identity affirmation and collaboration); and linguistically responsive instruction (including using students' home languages and multiple modalities, and explicit attention to academic language). Using design-based research, the project team will gather data from two primary settings: their professional development program and biology teachers' classrooms. They will use these data both to improve the instructional model and professional development for biology teachers. Additionally, the project team will study how teachers use the model to support emergent bilingual students' biology engagement and achievement, as well as study how biology teachers enact the instructional model in two school districts. The project will work toward three main outcomes: a) to develop new knowledge related to how diverse learners develop language and content knowledge in biology through engaging in science and engineering practices; b) to generate new knowledge about how biology teachers can adapt responsive instruction to local contexts and student populations; and c) to articulate an instructional model for biology teachers of emergent bilingual students that is rigorous, yet practical. The dissemination and sustainability include publishing and presenting findings at a range of conferences and journals; making available the refined instructional framework and professional development materials on a website; communication with district leaders and policymakers; and white papers that can be more widely distributed.

Pandemic Learning Loss in U.S. High Schools: A National Examination of Student Experiences

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic.

Lead Organization(s): 
Award Number: 
2030436
Funding Period: 
Fri, 05/15/2020 to Fri, 04/30/2021
Full Description: 

As a result of the COVID-19 pandemic, schools across much of the U.S. have been closed since mid-March of 2020 and many students have been attempting to continue their education away from schools. Student experiences across the country are likely to be highly variable depending on a variety of factors at the individual, home, school, district, and state levels. This project will use two, nationally representative, existing databases of high school students to study their experiences in STEM education during the COVID-19 pandemic. The study intends to ascertain whether students are taking STEM courses in high school, the nature of the changes made to the courses, and their plans for the fall. The researchers will identify the electronic learning platforms in use, and other modifications made to STEM experiences in formal and informal settings. The study is particularly interested in finding patterns of inequities for students in various demographic groups underserved in STEM and who may be most likely to be affected by a hiatus in formal education.

This study will collect data using the AmeriSpeak Teen Panel of approximately 2,000 students aged 13 to 17 and the Infinite Campus Student Information System with a sample of approximately 2.5 million high school students. The data sets allow for relevant comparisons of student experiences prior to and during the COVID-19 pandemic and offer unique perspectives with nationally representative samples of U.S. high school students. New data collection will focus on formal and informal STEM learning opportunities, engagement, STEM course taking, the nature and frequency of instruction, interactions with teachers, interest in STEM, and career aspirations. Weighted data will be analyzed using descriptive statistics and within and between district analysis will be conducted to assess group differences. Estimates of between group pandemic learning loss will be provided with attention to demographic factors.

This RAPID award is made by the DRK-12 program in the Division of Research on Learning. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics by preK-12 students and teachers, through the research and development of new innovations and approaches. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for the projects.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

 

 

 

 

Place-Based Learning for Elementary Science at Scale (PeBLES2)

To support equitable access to place-based science learning opportunities, Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested curricular units that meet the expectations of the NGSS. The project team will develop two units that could be used in any region across the country with built-in opportunities and embedded supports for teachers to purposefully adapt curriculum to include local phenomena.

Award Number: 
2009613
Funding Period: 
Fri, 05/15/2020 to Tue, 04/30/2024
Full Description: 

This project investigates how to design instructional resources and supporting professional learning that value rigor and standardization while at the same time creating experiences that help students understand their worlds by connecting to local phenomena, communities, and cultures. Currently, many instructional materials designed for widespread use do not connect to local phenomena, while units that do incorporate local phenomena are often developed from the ground up by community members, requiring extensive time and resources.  To support equitable access to place-based science learning opportunities, the Maine Mathematics and Science Alliance in collaboration with BSCS Science Learning, will develop and test a model to support 3rd-5th grade teachers in incorporating locally or culturally relevant place-based phenomena into rigorously tested units that meet the expectations of the Next Generation Science Standards (NGSS). The project team will develop two units and associated professional learning that could be used in any region across the country with built-in opportunities for teachers to purposefully adapt curriculum to include local phenomena.

A design based research approach will be used to: 1) iteratively design, test, and revise, two locally adaptable instructional resource packages for Grades 3-5 science; 2) examine how teachers apply unit resources and professional learning experiences to incorporate local phenomena into the curriculum and their teaching; and 3) examine how the process of curriculum adaptation can support teacher understanding of the science ideas and phenomena within the units, teacher agency and self-efficacy beliefs in science teaching, and student perceptions of relevance and interest in science learning. Participating teachers will range from rural and urban settings in California, Colorado, and Maine. Data sources will include instructional logs, teacher surveys, and student electronic exit tickets from 50 classrooms per unit as well as teacher interviews, classroom observations, and student focus groups from six exemplar case study teachers per unit. Evaluation of the project will focus on monitoring the (1) quality of the research and development components, (2) quality of program implementation to inform program improvement and future implementation, and (3) potential of scaling up the program to other sites and organizations. The design and research from this project will advance the field’s knowledge about how to design instructional materials and professional learning experiences that meet the expectations of the NGSS while also empowering teachers to adapt materials in productive ways, drawing on locally or culturally relevant phenomena.

Pages

Subscribe to Biology