Biology

Teaching Science Outdoors: A Next Generation Approach for Advancing Elementary Science Teaching in Urban Communities

This project project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. The goal of the project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms.

Lead Organization(s): 
Award Number: 
1907506
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project addresses a long-standing challenge in science education centered on providing meaningful science education opportunities to students living in communities of high poverty and attending under-resourced elementary schools. These students are significantly less likely to receive high-quality science learning opportunities and to be encouraged to engage in (rather than simply learn about) science. This Michigan State University research project is designed to enhance the capacity of elementary teachers in high-poverty urban communities for enacting Next Generation Science Standards (NGSS)-aligned science approaches using the outdoors as part of their classroom. It builds on and advances prior outdoor education work for the current context of science education that requires elementary teachers to engage students in making sense of phenomena using next generation science and engineering practices. The goal of this project is to advance elementary teachers' pedagogical practices and determine how this affects cognitive and non-cognitive learning outcomes of their students, particularly those who are traditionally marginalized in science classrooms. It also will advance knowledge on ways to bridge informal and formal learning environments. To achieve these goals, the project will develop, enact and study a program that involves a scaffolded series of summer professional development sessions focused on outdoor learning and school year follow-up meetings and classroom-based coaching for elementary teachers and informal educators from two high-need districts.

Design-based research will be utilized to: 1) foster teacher practices and study how these develop over time, 2) work with teachers to measure student outcomes, and 3) determine what aspects of this formal/informal approach are productive, measures of student engagement and student learning artifacts--will be analyzed. The project will serve as a model for developing partnerships between informal science organizations, educators, and K-12 programs. Revised measures and outcomes of teacher practices and student learning; outdoor-focused lesson plans; cases illustrating how elementary teachers develop and enact NGSS-aligned outdoor lessons; a revised informal-formal theoretical model; and information about dissemination of products including facilitation guidelines and coaching approaches will be developed and disseminated.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Danish)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908632
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Enyedy)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908791
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Developing the Science Comprehensive Online Learning Platform for Rural School Science Teacher Development

This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS).

Lead Organization(s): 
Award Number: 
1908937
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

Rural school districts in the US face unique challenges: isolation in small farm communities, significant distances between communities, minimal funding, and low teacher salaries. They also serve high numbers of diverse and low-income students, who deserve equitable access to high quality science learning opportunities. Effective online professional development (PD) is needed for teachers working in isolated rural communities where high quality face-to-face PD may be economically impractical for districts to offer. This project will develop, evaluate, and compare the effectiveness of newly-designed online learning platform with traditional face-to-face PD in supporting rural high school science teachers' implementation of an existing biology curriculum aligned with the Next Generation Science Standards (NGSS). The online learning platform will be modeled after successful face-to-face PD features: (1) job-embedded - learning occurs within the context of teachers' classroom instruction, (2) collaborative - teachers share experiences in implementing new practices, and (3) content-specific - teachers develop disciplinary content and instructional practices that support students' understanding of science. Once developed and refined, the online PD platform can be used broadly across other contexts and content areas.

Over a three year period, this project will develop, evaluate, and then compare an online PD platform for supporting rural science teachers in implementing the Towards High School Biology (THSB) curriculum with a traditional face-to-face PD. In year one, the research team will iteratively develop the online platform and adapt the already developed face-to-face PD for implementing THSB to an online format. Utilizing Curator, a social learning platform developed by HT2Labs, project researchers will embed teacher learning that is situated with their own classroom contexts, is asynchronously and synchronously collaborative, and is focused on the THSB curriculum content. In years two and three, forty eight rural middle-school science educators will be recruited from southwest Kansas and randomly assigned to online PD (treatment) or face-to-face PD (comparison). Using mixed methodology, the project will examine if differences exist between the conditions in regards to teacher content knowledge, teacher self-efficacy in using new practices, teacher classroom practices, and student learning outcomes. It is hypothesized that there should be no differences between conditions in fostering successful implementation of evidence-based science practices and student outcomes, demonstrating the success of an online modality to support deep conceptual change in teachers' instructional practices. Furthermore, lessons learned in developing and investigating a science comprehensive online learning platform can inform application to other disciplinary content (e.g., physics, chemistry, Earth and space sciences) and across other grade level and school contexts.

 

Case Studies of a Suite of Next Generation Science Instructional, Assessment, and Professional Development Materials in Diverse Middle School Settings

This project addresses a gap between vision and implementation of state science standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations.

Lead Organization(s): 
Award Number: 
1907944
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

New state science standards are ambitious and require important changes to instructional practices, accompanied by a coordinated system of curriculum, assessment, and professional development materials. This project addresses a gap between vision and implementation of such standards by designing a coordinated suite of instructional, assessment and teacher professional learning materials that attempt to enact the vision behind the Next Generation Science Standards. The study focuses on the design of such materials using state-of-the-art technology to create an 8-week long, immersive, life science field experience organized around three investigations. Classes of urban students in two states will collect data on local insect species with the goal of understanding, sharing, and critiquing environmental management solutions. An integrated learning technology system, the Learning Navigator, draws on big data to organize student-gathered data, dialogue, lessons, an assessment information. The Learning Navigator will also amplify the teacher's role in guiding and fostering next generation science learning. This project advances the field through an in-depth exploration of the goals for the standards documents. The study begins to address questions about what works when, where, and for whom in the context of the Next Generation Science Standards.

The project uses a series of case studies to create, test, evaluate and refine the system of instructional, assessment and professional development materials as they are enacted in two distinct urban school settings. It is designed with 330 students and 22 teachers in culturally, racially and linguistically diverse, under-resourced schools in Pennsylvania and California. These schools are located in neighborhoods that are economically challenged and have students who demonstrate patterns of underperformance on state standardized tests. It will document the process of team co-construction of Next Generation Science-fostering instructional materials; develop assessment tasks for an instructional unit that are valid and reliable; and, track the patterns of use of the instructional and assessment materials by teachers. The study will also record if new misconceptions are revealed as students develop Next Generation Science knowledge,  comparing findings across two diverse school locations in two states. Data collection will include: (a) multiple types of data to establish validity and reliability of educational assessments, (b) the design, evaluation and use of a classroom observation protocol to gather information on both frequency and categorical degree of classroom practices that support the vision, and (c) consecutive years of ten individual classroom enactments through case studies analyzed through cross-case analyses. This should lead to stronger and better developed understandings about what constitutes strong Next Generation Science learning and the classroom conditions, instructional materials, assessments and teacher development that foster it.

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences Collaborative Research: Metcalf)

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

Lead Organization(s): 
Award Number: 
1907398
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.

Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Baker)

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

Lead Organization(s): 
Award Number: 
1907437
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.

Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.

Developing an Online Game to Teach Middle School Students Science Research Practices in the Life Sciences (Collaborative Research: Gagnon)

This project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing STEM literacy and pursuing STEM career pathways.

Award Number: 
1907384
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The project will develop and research AquaLab 9, an online video game to engage middle school students in learning science research practices in life sciences content. By engaging in science research practices, students will develop intellectual skills that link directly to many state academic standards and are important for developing Science, Technology, Engineering, and Math (STEM) literacy and pursuing STEM career pathways. Learners will take on the role of a scientist working at an ocean-floor research station, cut off from the surface due to a catastrophe. They must identify problems, design experiments, create models, and argue from evidence to lead the station to survival. Learners will be challenged with highly relevant, contemporary issues such as waste management, energy use/production/storage, and ecological sustainability in the setting of a fantastical story. Designed for Grades 5-8, the game will be playable in 30-minute segments and will work on Chromebooks and tablet computers. The game will involve 40 educators in a yearlong fellowship where they will become co-designers, steer the project to serve the diverse students they represent, learn about games in education, facilitate playtests in their classrooms, and report their experiences to peers. The resulting game, in English and Spanish, will be utilized by at least 162,000 students by the end of the project and hundreds of thousands more after the project is completed. The project will broaden access through digital distribution and minimal technology requirements, which will create a low-cost opportunity for students to engage in science practices, even in schools where time, equipment, or expertise are not available.

Learning progressions are the steps that students go through when they are learning about a topic. The project will research how learning progressions can provide a framework for educational game design. These progressions will be empirically derived from large audience game play data. The game can thus be designed to create personalized interventions for students to improve learning outcomes. Project research will use an approach called stealth assessment, which analyzes data from students' game behavior without requiring a disruption or intervention in the game activities. This project will use this approach for developing empirically validated understandings of how different students develop their science practices. Based on this research, the game will be revised to improve student learning by providing individualized feedback to each student.

CAREER: Expanding Latinxs' Opportunities to Develop Complex Thinking in Secondary Science Classrooms through a Research-Practice Partnership

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.

Award Number: 
1846227
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. Science educators generally agree that science classrooms should provide opportunities for students to advance their thinking by engaging in critical conversations with each other as capable sense-makers. Despite decades of reform efforts and the use of experiential activities in science instruction, research indicates that classroom learning for students remains largely procedural, undemanding, and disconnected from the development of substantive scientific ideas. Furthermore, access to high-quality science instruction that promotes such complex thinking is scarce for students with diverse cultural and linguistic backgrounds. The project goals will be: (1) To design a year-long teacher professional development program; and (2) To study the extent to which the professional development model improves teachers' capacity to plan and implement inclusive science curricula.

This study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners. The work will build on a previous similar activity with one local high school; plans are to expand the existing study to an entire school district over five years. The proposed work will be conducted in three phases. During Phase I, the study will develop a conceptual framework focused on inclusive science curricula, and implement the new teacher professional development program in 3 high schools with 15 science teachers. Phase II will expand to 6 middle schools in the school district with 24 teachers aimed at creating a continuous and sustainable research-practice partnership approach at the district. Phase III will focus on data analysis, assessment of partnership activities, dissemination, and planning a research agenda for the immediate future. The study will address three research questions: (1) Whether and to what extent does participating teachers' capacity of planning and implementing the curriculum improve over time; (2) How and why do teachers show differential progress individually and collectively?; and (3) What opportunities and constraints within schools and the school district shape teachers' development of their capacity to design and implement curricula? To address the research questions, the project will gather information about the quality of planned and implemented curriculum using both qualitative and quantitative data. Main project's outcomes will be: (1) a framework that guides teachers' engagement in planning and implementing inclusive science curricula; and (2) increased knowledge base on teacher learning. An advisory board will oversee the work in progress. An external evaluator will provide formative and summative feedback.

Articulating a Transformative Approach for Designing Tasks that Measure Young Learners' Developing Proficiencies in Integrated Science and Literacy (Collaborative Research: Billman)

The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades.

Partner Organization(s): 
Award Number: 
1853951
Funding Period: 
Sat, 12/15/2018 to Sat, 11/30/2019
Full Description: 

SRI International, University of California-Berkeley (Lawrence Hall of Science), and WestEd will join efforts to articulate a potentially transformative approach for designing new kinds of classroom-based, three-dimensional assessment tasks that measure first graders' proficiencies in integrated science and literacy learning. The main goal of this study will be to conduct exploratory-design work to produce both the design approach and the early-stage tasks that are critical inputs for creating a program of research and development to more fully develop a suite of innovative assessment tasks for the early grades. Specific goals of the effort will be: (1) to iteratively develop and refine a design approach that enables assessment designers to develop Next Generation Science Standards (NGSS)-aligned tasks and rubrics that include a literacy component for the early grades; (2) to use this design approach to create two exemplar assessment tasks that are feasible for classroom use; and (3) to collect initial evidence that informs the promise of the design approach.

The work's research question will be: How can we extend current methodology to create assessments that integrate the three dimensions of the NGSS and literacy for early learners? The study will select first grade as the learning environment and two of the NGSS first grade performance expectations as the assessment targets. First grade students are typically at a critical point in developing their language and literacy proficiencies, which will allow the team to take on the challenges of variation in language and literacy skills. Correspondingly, the study will select two NGSS first grade life sciences performance expectations, because they include direct ties to literacy practices in science: (1) From Molecules to Organisms: Structures and Processes (Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive); and (2) Heredity: Inheritance and Variation of Traits (Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like their parents). The design phase of the activity will consist of an assessment of the learning context and targets of the study, and the development of an assessment framework following the National Research Center's report, "Designing Assessments for the Next Generation Science Standards" (2014), including the principled assessment evidence-centered-design methodology. Data gathering, and interpretation strategies will include Experts' Review of the design approach, a focus group of teachers (n=8), and one-on-one cognitive interviews with students (n=20), conducted by researchers, which will be recorded to determine the quality and usability of the assessments using qualitative methods. The ultimate outcome of the proposed work will be a design approach for creating assessment tasks in a principled way across science disciplines for early elementary grade students. An advisory board will provide formative assessment feedback to the research team.

Pages

Subscribe to Biology