Algebra

Supporting Success in Algebra: A Study of the Implementation of Transition to Algebra

The project will research the implementation of Transition to Algebra, a year-long mathematics course for underprepared ninth grade students taken concurrently with Algebra 1 to provide additional support, and its impact on students' attitudes and achievement in mathematics in combination with teachers' instruction and the types of supports teachers need to successfully implement the intervention.

Partner Organization(s): 
Award Number: 
1621011
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

The project will research the impact and implementation of Transition to Algebra, a year-long mathematics course for underprepared ninth grade students taken concurrently with Algebra 1 to provide additional support. Nationally, there is a need for programs that support students' learning of algebra and that provide research-based resources and models particularly for students in need of additional support. The design of the Transition to Algebra curriculum reflects the idea that students underprepared for Algebra 1 can benefit from very specific help in building the logic of algebra by connecting arithmetic pattern and algebraic structure. The materials feature the use of mental mathematics, puzzles, explorations, and student dialogues to connect arithmetic pattern to algebraic structure. These features should encourage students to expect mathematics ideas to make sense, and to build algebraic habits of mind and problem solving stamina. The research will investigate the effects of the curriculum on students' algebra achievement and their attitudes towards mathematics. The Discovery Research PreK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The research questions examine the impact of the Transition to Algebra course on students' attitudes and achievement in mathematics in combination with teachers' instruction and the types of supports teachers need to successfully implement the intervention. The project will use a pre-post quasi-experimental design, along with propensity score methods to reduce selection bias threats, to examine the implementation in approximately 35 treatment schools and 35 comparison schools. Qualitative and quantitative data will be collected and analyzed to address research questions. The study will also investigate how teachers use and adapt Transition to Algebra materials, and the supports critical to successful implementation. For example, the study will examine whether and how school and district activities such as common planning time, coaching, and other professional development experiences influence the implementation fidelity of the curriculum. Qualitative data will be collected through interviews and classroom observations. Quantitative data will be collected using student and teacher surveys, an algebra readiness assessment, a standardized end-of-course assessment, and students' scores on state tests.

Enhancing Middle Grades Students' Capacity to Develop and Communicate Their Mathematical Understanding of Big Ideas Using Digital Inscriptional Resources (Collaborative Research: Phillips)

This project will develop and test a digital platform for middle school mathematics classrooms to help students deepen and communicate their understanding of mathematics. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class.

Lead Organization(s): 
Award Number: 
1620934
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The primary goal of this project is to help middle school students deepen and communicate their understanding of mathematics. The project will develop and test a digital platform for middle school mathematics classrooms. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class. The digital learning environment makes use of a problem-centered mathematics curriculum that evolved from extensive development, field-testing and evaluation, and is widely used in middle schools. The research will also contribute to understanding about the design and innovative use of digital resources and collaboration in classrooms as an increasing number of schools are drawing on these kinds of tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project will support students to collaboratively construct, manipulate, and interpret shared representations of mathematics using digital inscriptional resources. The research activities will significantly enhance our understanding of student learning in mathematics in three important ways. The project will report on how (1) evidence of student thinking is made visible through the use of digital inscriptional resources, (2) student inscriptions are documented, discussed, and manipulated in collaborative settings, and (3) students' conceptual growth of big mathematical ideas grows over time. An iterative design research process will incorporate four phases of development, testing and revision, and will be conducted to study student use of the digital learning space and related inscriptional resources. Data sources will include: classroom observations and artifacts, student and teacher interviews and surveys, student assessment data, and analytics from the digital platform. The process will include close collaboration with teachers to understand the implementation and create revisions to the resources.


Project Videos

2019 STEM for All Video Showcase

Title: Math Understanding in a Digital Collaborative Environment

Presenter(s): Alden Edson, Kristen Bieda, Chad Dorsey, Nathan Kimball, & Elizabeth Phillips


CAREER: Designing Learning Environments to Foster Productive and Powerful Discussions Among Linguistically Diverse Students in Secondary Mathematics

Lead Organization(s): 
Award Number: 
1553708
Funding Period: 
Mon, 02/01/2016 to Sun, 01/31/2021
Full Description: 

The project will design and investigate learning environments in secondary mathematics classrooms focused on meeting the needs of English language learners. An ongoing challenge for mathematics teachers is promoting deep mathematics learning among linguistically diverse groups of students while taking into consideration how students' language background influences their classroom experiences and the mathematical understandings they develop. In response to this challenge, this project will design and develop specialized instructional materials and guidelines for teaching fundamental topics in secondary algebra in linguistically diverse classrooms. The materials will incorporate insights from current research on student learning in mathematics as well as insights from research on the role of language in students' mathematical thinking and learning. A significant contribution of the work will be connecting research on mathematics learning generally with research on the mathematics learning of English language learners. In addition to advancing theoretical understandings, the research will also contribute practical resources and guidance for mathematics teachers who teach English language learners. The Faculty Early Career Development (CAREER) program is a National Science Foundation (NSF)-wide activity that offers awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organizations.

The project is focused on the design of specialized hypothetical learning trajectories that incorporate considerations for linguistically diverse students. One goal for the specialized trajectories is to foster productive and powerful mathematics discussions about linear and exponential rates in linguistically diverse classrooms. The specialized learning trajectories will include both mathematical and language development learning goals. While this project focuses on concepts related to reasoning with linear and exponential functions, the resulting framework should inform the design of specialized hypothetical learning trajectories in other topic areas. Additionally, the project will add to the field's understanding of how linguistically diverse students develop mathematical understandings of a key conceptual domain. The project uses a design-based research framework gathering classroom-based data, assessment data, and interviews with teachers and students to design and refine the learning trajectories. Consistent with a design-based approach, the project results will include development of theory about linguistically diverse students' mathematics learning and development of guidance and resources for secondary mathematics teachers. This research involves sustained collaboration with secondary mathematics teachers and the impacts will include developing capacity of teachers locally, and propagating the results of this work in professional development activities.


Project Videos

2020 STEM for All Video Showcase

Title: Engaging Multilingual Secondary Math Learners in Discussions

Presenter(s): William Zahner, Ernesto Calleros, & Kevin Pelaez

2019 STEM for All Video Showcase

Title: Fostering Math Discussions among English Learners

Presenter(s): William Zahner


Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Schoenfeld)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503454
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

TRUmath and Lesson Study: Supporting Fundamental and Sustainable Improvement in High School Mathematics Teaching (Collaborative Research: Donovan)

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project is based on the TRUmath framework and will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change.

Award Number: 
1503342
Funding Period: 
Wed, 07/01/2015 to Sun, 06/30/2019
Full Description: 

Given the changes in instructional practices needed to support high quality mathematics teaching and learning based on college and career readiness standards, school districts need to provide professional learning opportunities for teachers that support those changes. The project will build a coherent and scalable plan for providing these opportunities in high school mathematics departments, a traditionally difficult unit of organizational change. Based on the TRUmath framework, characterizing the five essential dimensions of powerful mathematics classrooms, the project brings together a focus on curricular materials that support teaching, Lesson Study protocols and materials, and a professional learning community-based professional development model. The project will design and revise professional development and coaching guides and lesson study mathematical resources built around the curricular materials. The project will study changes in instructional practice and impact on student learning. By documenting the supports used in the Oakland Unified School District where the research and development will be conducted, the resources can be used by other districts and in similar work by other research-practice partnerships.

This project hypothesizes that the quality of classroom instruction can be defined by five dimensions - quality of the mathematics; cognitive demand of the tasks; access to mathematics content in the classroom; student agency, authority, and identity; and uses of assessment. The project will use an iterative design process to develop and refine a suite of tool, including a conversation guide to support productive dialogue between teachers and coaches, support materials for building site-based professional learning materials, and formative assessment lessons using Lesson Study as a mechanism to enact reforms of these dimensions. The study will use a pre-post design and natural variation to student the relationships between these dimensions, changes in teachers' instructional practice, and student learning using hierarchical linear modeling with random intercept models with covariates. Qualitative of the changes in teachers' instructional practices will be based on coding of observations based on the TRUmath framework. The study will also use qualitative analysis techniques to identify themes from surveys and interviews on factors that promote or hinder the effectiveness of the intervention.

Visual Access to Mathematics: Professional Development for Teachers of English Learners

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

Award Number: 
1503057
Funding Period: 
Sat, 08/01/2015 to Fri, 07/31/2020
Full Description: 

The demands placed on mathematics teachers of all students have increased with the introduction of college and career readiness standards. At the same time, the mathematics achievement of English Language Learners (ELLs) lags behind that of their peers. This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics. The project will study how to enhance teachers' pedagogical content knowledge that is critical to fostering ELLs' mathematical problem solving and communication to help support fluency in using VRs among teachers and students. To broaden the participation of students who have traditionally not demonstrated high levels of achievement in mathematics, a critical underpinning to further success in the sciences and engineering, there will need to be greater support for teachers of these students using techniques that have been demonstrated to improve student learning. 

The project will use an iterative design and development process to develop a blended learning model of professional development on using VRs with a 30-hour face-to-face summer institute and sixteen 2-hour online learning sessions. Teachers and teacher-leaders will help support the development of the professional development materials. A cluster randomized control trial will study the piloting of the materials and their impact on teacher outcomes. Thirty middle schools from Massachusetts and Maine serving high numbers of ELLs, with approximately 120 teachers, will be randomly assigned to receive the treatment or control conditions. Using a two-level random intercepts hierarchical linear model, the study will explore the impact of participation in the professional development on teachers' mathematical knowledge for teaching and instructional practice. The pilot study will also explore the feasibility of delivering the professional development model more broadly. It builds on prior work that has shown efficacy in geometry, but expands the work beyond a single area in mathematics. At the same time, they will test the model for feasibility of broad implementation.


Project Videos

2019 STEM for All Video Showcase

Title: Designing PD for Math Educators of Students Who are ELs

Presenter(s): Peter Tierney-Fife, Pamela Buffington, Josephine Louie, Jill Neumayer Depiper, & Johannah Nikula

2016 STEM for All Video Showcase

Title: Visual Access to Mathematics: Supporting Teachers of ELs

Presenter(s): Johannah Nikula, Pam Buffington, Mark Driscoll & Peter Tierney-Fife


Teaching and Learning Algebraic Thinking Across the Middle Grades: A Research-based Approach Using PhET Interactive Simulations

This project addresses three central challenges: 1) the tendency for students to not engage in real mathematical thinking as they use technologies; 2) the tendency for teachers to not enact pedagogically-effective approaches; and 3) the lack of adoption of effective technologies by teachers due to a variety of barriers. This project will use rich, exploratory, interactive simulations and associated instructional materials as a pathway for making rapid progress and focusing on advancing algebraic thinking in Grades 6-9.

Lead Organization(s): 
Award Number: 
1503510
Funding Period: 
Tue, 09/01/2015 to Mon, 08/31/2020
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. 

Widespread, high-quality use of technology has great potential to transform today's mathematics classrooms and enable all students to develop a robust conceptual understanding of mathematics. Critical challenges are currently limiting the realization of this potential, and 69% of US Grade 8 students are scoring below proficient in national studies. In this 3-year Discovery Research K-12 Full Research and Development project, Teaching and Learning Algebraic Thinking Across the Middle Grades: A Research-based Approach Using PhET Interactive Simulations, the PhET Interactive Simulations group at the University of Colorado Boulder is partnering with mathematics education researchers at the University of South Florida St. Petersberg and Florida State University to address three central challenges, as follows: 1) the tendency for students to not engage in real mathematical thinking as they use technologies; 2) the tendency for teachers to not enact pedagogically-effective approaches; and 3) the lack of adoption of effective technologies by teachers due to a variety of barriers. This collaborative effort uses rich, exploratory, interactive simulations and associated instructional materials as a pathway for making rapid progress and focuses on advancing algebraic thinking in Grades 6-9.

This project seeks to enable teachers to fully-leverage the benefits of interactive simulations to advance student engagement and learning of mathematics, moving technology from the margins to a core part of instruction. The project will answer critical research questions, such as: how the design of an interactive simulation can generate pedagogically-productive use; how instruction with simulations can be best structured to support learning of mathematical concepts and engagement in mathematical practices; how sim-based instruction can be made attractive, feasible and effective for teachers; and finally, how student learning is impacted by sim-based instruction. At the same time, this project will produce a collection of open educational resources for teachers and students. These resources will include 15 research-based, student-tested simulations for teaching and learning of algebraic thinking, associated instructional support materials, and teacher professional development resources for effective implementation. Based on the 75 million uses per year of PhET?s science simulations, we expect these resources to transform mathematics instruction for millions of students and thousands of teachers.

This project will employ a variety of research methods to approach these questions. Researchers will use individual interviews from a diverse group of Grades 6-9 students as they use the 15 new simulations to examine usability, engagement, and achievement and to identify design approaches that stimulate productive use. In parallel, classroom-based studies in Colorado and Florida will investigate ways in which simulations can be combined with instructional materials and teacher facilitation to engage groups of students in inquiry, promote rich discussions of important mathematical ideas, and advance achievement in the Common Core State Standards for Mathematics. The project will employ an iterative design and development process involving qualitative and quantitative analysis of diverse measures including the quality of mathematical instruction. Finally, a pilot study and an evaluation of teacher PD supports will examine the feasibility and fidelity with which teachers implement the innovation, and the impact on student learning.

Sample Publications

Hensberry, KKR, Whitacre, I., Findley, K., Schellinger, J., & Burr, M. (2018). Engaging students with mathematics through play. Mathematics Teaching in the Middle School, 24(3), 197-183. (https://www.jstor.org/stable/10.5951/mathteacmiddscho.24.3.0179)

Ian Whitacre, Karina Hensberry, Jennifer Schellinger & Kelly Findley (2019) Variations on play with interactive computer simulations: balancing competing priorities, International Journal of Mathematical Education in Science and Technology, 50:5 , 665-681. (https://www.tandfonline.com/doi/full/10.1080/0020739X.2018.1532536

Findley, K., Whitacre, I., Schellinger, J. & Hensberry, K. (2019). Orchestrating Mathematics Lessons with Interactive Simulations: Exploring Roles in the Classroom. Journal of Technology and Teacher Education, 27(1), 37-62. (https://www.learntechlib.org/noaccess/184666/)

Jeffrey B. Bush, David C. Webb, Nancy Emerson Kress, Wanqiu Yang and Katherine K. Perkins, Classroom Activities for Digital Interactive Simulations to Support Realistic Mathematics Education, Paper presented at the 6th International Realistic Mathematics Education Conference Georgetown, Cayman Islands, September 20, 2018. (https://www.icrme.net/uploads/1/0/9/8/109819470/bush_etal_phet_rme6paper_final.pdf)


Project Videos

2019 STEM for All Video Showcase

Title: Transforming Math Classrooms with PhET Simulations

Presenter(s): Kathy Perkins, Sebnem Atabas, Jeff Bush, Karina Hensberry, Amanda McGarry, Corinne Singleton, David Webb, & Ian Whitacre

2017 STEM for All Video Showcase

Title: Teaching and Learning Math with PhET Simulations

Presenter(s): Kathy Perkins, Karina Hensberry, Amanda McGarry, David Webb, & Ian Whitacre


Math Snacks Early Algebra Using Games and Inquiry to Help Students Transition from Number to Variable

This project will develop games to build conceptual understanding of key early algebra topics. The materials will be freely accessible on the web in both English and Spanish. The project will develop 4-5 games. Each game will include supporting materials for use by students in inquiry-based classroom lessons, and web-based professional development tools for teachers.

Lead Organization(s): 
Award Number: 
1503507
Funding Period: 
Tue, 09/01/2015 to Sat, 08/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

Many U.S. students enter college without the necessary background in algebra to be successful in advanced mathematics and science courses, and are thereby blocked from many rewarding careers. Oftentimes, the problem goes back to early algebra in grades 4-6, where students are introduced to abstract formulations before they understand the underlying ideas and the reasons for the questions being asked. As a result of inadequate preparation many students turn away from mathematics when faced with abstract algebra. Without mathematics, students are not able to enter the STEM field which results in a weakened workforce in these fields in the United States. In this 4-year Full Research and Development project, Math Snacks Early Algebra: Using Games and Inquiry to Help Students Transition from Number to Variable, the interdisciplinary research group from New Mexico State University will build on their success in using games to increase students' understanding of proportional reasoning and fractions. They will develop games to build conceptual understanding of key early algebra topics. The materials will be freely accessible on the web in both English and Spanish. The project will develop 4-5 games. Each game will include supporting materials for use by students in inquiry-based classroom lessons, and web-based professional development tools for teachers.

Most students do not understand the variety of distinct ways that variables are used in mathematics: unknowns to be solved for, related quantities, general properties of numbers, and other uses. Algebra courses often emphasize the rules of manipulation, with less time spent on the underlying ideas. Students see variables as confusing new material, rather than as shortcuts for making sense of numbers, or as powerful tools for analyzing interesting problems. This hinders students' later interest and progress in STEM courses and careers.The intellectual merit for this R & D project includes the development of a new way to learn key underlying concepts in algebra, further investigation of the affordances of games and technology in learning abstract mathematical concepts, and a better understanding of learning assessment in early algebra. The broader impact for this R & D project includes making these tools widely available to students, and the potential shift of teachers towards effective mathematical pedagogy that is engaging and inquiry-based. Development will begin with existing research on early algebraic thinking and learning, and proceed through an iterative process involving design, testing in the NMSU Learning Games Lab, testing in classrooms, and back to design. The project will then study the effect of the developed materials on student understanding and on classroom learning environments. Qualitative and quantitative measures will be used. Researchers will use a custom measure aligned with NAEP (National Assessment of Educational Progress) and other standard tests, interviews and observations with teachers and students, and embedded data collection and self-reports on frequency and extent of game usage. After two earlier pilot studies, in the final year a delayed intervention study will be conducted with 50 teachers and their students. The Math Snacks team has existing partnerships for distribution of games and materials with PBS, GlassLabs, BrainPOP, and others. Academic findings of the project will be shared through conferences and research publications.

CAREER: Advancing Secondary Mathematics Teachers' Quantitative Reasoning

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.

Award Number: 
1350342
Funding Period: 
Tue, 07/15/2014 to Tue, 06/30/2020
Full Description: 

Science, Technology, Engineering and Mathematics [STEM] and STEM education researchers and policy documents have directed mathematics educators at all levels to increase emphasis on quantitative reasoning so that students are prepared for continued studies in mathematics and other STEM fields. Often, teachers are not sufficiently prepared to support their students' quantitative reasoning. The products generated by this project fill a need for concrete materials at the pre-service level that embody research-based knowledge in the area of quantitative reasoning. The accessible collection of research and educational products provides a model program for changing prospective mathematics teachers' quantitative reasoning that is adoptable at other institutions across the nation. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge. Three interrelated research questions guide the project: (i) What aspects of quantitative reasoning provide support for prospective teachers' understanding of major secondary mathematics concepts such as function and algebra? (ii) How can instruction support prospective teachers' quantitative reasoning in the context of the teaching and learning of major secondary mathematics concepts such as function and algebra? (iii) How do the understandings prospective teachers hold upon entering a pre-service program support or inhibit their quantitative reasoning? Advancing Reasoning addresses these questions by enacting an iterative, multi-phase study with 200 prospective teachers enrolled in a secondary mathematics education content course over 5 years. The main phase of the study implements a series of classroom design experiments to produce knowledge on central aspects of prospective teachers' quantitative reasoning and the instructional experiences that support such reasoning. By drawing this knowledge from a classroom setting, Advancing Reasoning contributes research-based and practice-driven deliverables that improve the teaching and learning of mathematics.

Pages

Subscribe to Algebra