Video

Empowering Teachers through VideoReview

This project  will develop a video recording and analysis system called VideoReView (VRV) that allows grade four science teachers to record, tag, and analyze video in their classroom in real time. The investigators will then study and enhance the system in the context of professional learning communities of teachers. 

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1415898
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

This project represents a collaboration between TERC and IntuVision to develop a video recording and analysis system called VideoReView (VRV) that allows grade four science teachers to record, tag, and analyze video in their classroom in real time. The system will contain a number of features---such as a sophisticated system of tagging and the automatic detection of important video segments---designed to speed and assist the teacher in its use. The investigators will then study and enhance the system in the context of professional learning communities of teachers. The system is expected to enable teachers to examine their own teaching, and that of others, in a much more dynamic and specific way and to integrate video into their ongoing structures of professional learning. To date, video analysis of teaching is out of the reach of ordinary teachers. If successful, this research could change the way teachers engage in their own profession and their understanding of, for example, student thinking and argumentation in science---something emphasized in the Next Generation Science Standards---but previously more difficult to do without being able to replay and refine teaching episodes.

The complete VRV System will be tested with 18 Grade four teachers and approximately 400 students from six schools in the Newton Public School System in a Boston suburb. The emphasis of the study will be on the ability of teachers to use the system with little outside assistance, means of enhancing its features and usability, and its integration into professional learning communities. A mixed methods research design will be used that includes surveys and interviews. The study outcomes will be disseminated through publications and conference presentations.

Meaningful Support for Teachers: Specific Ways to Encourage Game-Based Learning in the Classroom

Day: 
Tues

Panelists from three projects share lessons learned in guiding game use in classroom learning, highlighting specific examples of effective resources.

Date/Time: 
9:45 am to 11:45 am
2014 Session Types: 
Collaborative Panel Session
Session Materials: 

The three panelists in this session are in the last one or two years of their game-based learning projects, and all have done extensive work in supporting use of their games in classroom learning. As their work has progressed, each has discovered valuable ways to support teachers as well as encountered surprises in what teachers wanted (and didn’t want), and now recognize things they wished they had learned in the beginning of their projects. Session participants leave with recommendations they can use in their current projects, including:

Next Generation Preschool Science: An Innovative Program to Facilitate Young Children's Learning of Science Practices and Concepts

This project is developing, iteratively refining and evaluating a science curriculum for Pre-K classrooms with units on Plant Growth, How Things Move, and What Makes Shadows by integrating traditional classroom resources (large and small group activities, hands-on activities, read-alouds) with digital media (touch screen tablets, photos and short videos, and games/simulations).

Lead Organization(s): 
Award Number: 
1316550
Funding Period: 
Sun, 09/15/2013 to Fri, 08/31/2018
Full Description: 

SRI is developing, iteratively refining and evaluating a science curriculum for Pre-K classrooms with units on Plant Growth, How Things Move, and What Makes Shadows. Working with EDC and WGBH, the project is integrating traditional classroom resources (large and small group activities, hands-on activities, read-alouds) with digital media (touch screen tablets, photos and short videos, and games/simulations). The importance of this approach is that it facilitates the implementation of quality science instruction in pre-schools by reducing the resources and commitment needed. The project is also producing professional development resources for teachers. Project evaluation is by the Concord Evaluation Group. The products of the project are being distributed by PBS Media.

Using an Evidence Centered Design approach, the project is doing a Phase I development and pilot study during the first two years, followed by a Phase II field study in year 3, with 10 classrooms in California and 10 in New York, half of which will be for comparison purposes. Ten children from each classroom are being selected through a stratified randomization process for a more detailed examination of student outcomes. There are 8 research questions covering the three phases of the project; development, implementation, and sustainability. Data collection on child learning is using the project developed science assessment as well as a standardized assessment of children's science learning LENS on Science. Evidence on teachers' confidence is being collected with the Preschool Teachers Attitudes and Beliefs about Science scale (P-TABS). In addition, the project is conducting interviews and observations in the 10 classrooms where teachers are implementing the curriculum units.

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat in Science

This project investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

Award Number: 
1313713
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat is an Exploratory Project in the Teacher Strand of DRK-12 that investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

The project includes three major activities:

1) An experimental study testing the hypothesis that the influences of stereotype threat on individual students affects instructional processes for the class as a whole: Research participants include three teachers from 3 different school districts in Massachusetts, each with four 8th grade science classes, for a total sample of 12 science classes and approximately 300 students. The two treatment conditions (stereotype threat induced vs. not induced) are applied blindly to three classroom groups over a series of six lessons. The project uses existing surveys for gathering data, including "Communicative Interactions", RTOP subscales, subscales of the Constructivist Learning Environment Survey (CLES), and a brief student questionnaire measuring domain salience (e.g., self ranking of degree of participation in class). The analysis is conducted using Ordinary Least Squares (OLS) regression, with predictions of classroom instructional processes based on treatment condition, percentage of students in stereotyped group, and domain salience.

2) Collaboration with teachers as co-researchers to translate research findings into classroom practices and a prototype online professional development course: Three middle school teachers who participated in Study 1 serve as co-researchers, using the Universal Design for Learning model. The product is a prototype, online professional development modules that include self-paced presentations, small group facilitated discussions, asynchronous discussions, and live webcasts with experts, all focused on how teachers can implement strategies to mitigate stereotype threat in their practice. The design elements will be assessed in terms of clarity, accessibility, use, value, and promise.

3) Pilot testing of three professional development modules: The professional development component (via communities of practice) supports classroom teachers as they incorporate these strategies into their daily activities. The three teachers involved in the original study and design of modules participate in a six-week pilot study of the online professional development course, anticipated to consist of three modules, with teachers participating 3-4 hours per week. The course is evaluated through observations of professional development interactions (synchronous and asynchronous), interviews, implementation strategies, Moodle Electronic Usage Logs, online discussions, and a questionnaire. Descriptive statistics and regression analysis are used to seek predictors of use and contributions by teacher characteristics.

The project contributes critical knowledge about stereotype threat, a construct shown to contribute to disparities in achievement in STEM education. The outcomes of the project will include research findings that are to be submitted to science education research journals for publication; a prototype, online teacher professional development course on mitigating stereotype threat in STEM education classrooms; and dissemination of the course to teachers who are part of the CAST and Minority Student Achievement Networks.

Modeling Scientific Practice in High School Biology: A Next Generation Instructional Resource

This project addresses the need for a curricular resource package to support a high school biology course fully aligned to the core ideas, crosscutting concepts, and scientific practices of College and Career Readiness standards. The project will develop a suite of resources including educative curricular materials, pedagogical tools, intensive teacher professional development, and video documentation of exemplary implementation and investigate the impact of the instructional resource on teacher and student learning.

Award Number: 
1348990
Funding Period: 
Tue, 10/01/2013 to Fri, 09/30/2016
Full Description: 

This project addresses an immediate challenge facing high school science education: the need for a curricular resource package to support a high school biology course fully aligned to the core ideas, crosscutting concepts, and scientific practices of College and Career Readiness standards. The project will develop a suite of resources including educative curricular materials, pedagogical tools, intensive teacher professional development, and video documentation of exemplary implementation and investigate the impact of the instructional resource on teacher and student learning. The full curricular resource package will be coupled with an innovative online lesson builder to foster a cycle of continuous improvement, as teachers document their adaptations to the curricular resources over time.

The project has four phases. During the design phase a team of university faculty and science education experts work with two high school biology teachers to modify existing exemplary curriculum materials and instructional supports and align them to the College and Career Readiness science standards. These newly created materials and supports are piloted by the two collaborating teachers and data from the pilot are used to refine the materials. Once the package is complete and refined it will be implemented by an additional ten high school biology teachers. Data from the implementation will allow research into how teachers use the materials to plan their lessons, how the materials are enacted in classrooms and the effects the materials have on student learning. The final phase of the project will be to disseminate the resulting curriculum package and research findings to the public.

The project leverages, aligns and amplifies the NSF-developed resources of previously successful researchers and their tools, methodologies and supports. The need for truly aligned curricula and supports will be pressing as new core standards are implemented across the nation. There is a need for re-tooling the skills and pedagogical approaches of many teachers in the face of the current reforms. The project will meet these needs and provide a substantive contribution to the emerging national vision of quality science education.

Sensing Science: Temperature and Heat Readiness for Early Elementary Students

Concord Consortium is exploring K-2 students' understanding of heat and temperature in two Massachusetts school districts using sensors that display temperatures as colors. Exploration activities are being created, and students are being videotaped carrying out the activities. Students complete a short assessment for each activity. The exploration activities, assessments, and project data are available via open source through a website at Concord Consortium and are being presented to multiple professional audiences.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222892
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

Concord Consortium is exploring K-2 students' understanding of heat and temperature in two Massachusetts school districts using sensors that display temperatures as colors. The project is investigating the following research questions:

- How can visualizations, data collection linked to everyday experiences, and student reflection integrated into creative exploration address student preconceptions and promote K-2 student understanding of temperature and heat?

- How can the use of replay of video and reflection aid in addressing K-2 student preconceptions and improve student understanding of heat and temperature?

- Can the use of visualizations and data collection via digital sensing technology advance K-2 students past the goals of the K-2 science frameworks?

The project is being implemented in 10 classrooms for about 250 children representing diverse populations. Exploration activities are being created, and students are being videotaped carrying out the activities. Students complete a short assessment for each activity. Project staff will revisit the videos with the students to explore student concepts at a deeper level. David Reider of Education Design Inc. is conducting the evaluation which will focus on 1) program efficacy and design and 2) alignment with research design. It is formative in design with annual summative reports. From their data, the project is constructing a progressive hierarchy of student theories of heat and temperature. The project is also producing a protocol that teachers can use to have better dialogues with children that support children's reconstruction of their initial conceptions. The exploration activities, assessments, and project data are available via open source through a website at Concord Consortium and are being presented to multiple professional audiences.

Student Mathematics Learning Through Self-Explanation, Peer Tutoring and Digital Media Production

This project engages high-school students as student-tutors who create screen-capture videos that demonstrate step-by-step solutions to mathematical problems and explicate the use of interactive applets. The project tests whether the mathematical and communication skills of student-tutors improve in the process of making the video materials. It also tests whether teachers and student users benefit from the videos. The project will examine whether the process of creating and disseminating the videos is replicable and scalable.

Lead Organization(s): 
Award Number: 
1119654
Funding Period: 
Mon, 08/15/2011 to Thu, 07/31/2014
Full Description: 

Watch a video report on the Teachers Create/Media Making Research effort.

This exploratory research and development project engages high-school students as student-tutors who create screen-capture videos that demonstrate step-by-step solutions to mathematical problems and explicate the use of interactive applets. The project has three development goals (a model for creating the media, a model for collaboration with teachers, and enhancements to a Lesson Study model) and three research goals (to test conjectures about student change, to analyze reconfigured roles for teachers and students, and to advance a theory of personalized learning communities.) The project tests whether the mathematical and communication skills of student-tutors improve in the process of making the video materials. It also tests whether teachers and the student users of the videos benefit from them. Further, the project will examine whether the process of creating and disseminating the videos is replicable and scalable.

The project uses design research methods as well as both formative and summative evaluations to achieve the research and development goals. The investigators pose a series of thoughtful research questions and plan to use a variety of research methods to collect and analyze data to answer them.

The project is potentially transformative. The advances in technology present opportunities and challenges for improving student learning. Built on strong theoretical and empirical foundations and prior work, the project takes full advantages of the opportunities of tutoring using 21st-century technologies - marrying screen-capture video with a model of student-delivered tutoring. The project will contribute to an understanding of how teachers and student-tutors change and exercise creativity through participating in digital media production. The findings of the project will have broader impact in at least three dimensions: (1) The videos created by students will be helpful for other students' learning; (2) The research on engaging students in creating videos can not only help us understand the effective use of technology, but also help us understand the mechanism for developing students' generative thinking and creativity; and (3) This project can provide insights about how to integrate 21st-Century technology into regular classrooms.

Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards

This is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices.

Award Number: 
1119163
Funding Period: 
Mon, 08/01/2011 to Tue, 07/31/2012
Full Description: 

The Implementing Mathematical Practices Standards (IMPS) is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices. Researchers at the Education Development Center are developing videos and print materials that exemplify the mathematical practices and are working with teachers in grades 5-10 to help them use the materials effectively. The research questions of the project are focused on what features of the materials are most helpful to teachers and what professional development characteristics facilitate implementation of the mathematics practices in classroom instruction. The external evaluation of the project is being conducted by evaluators at TERC who are looking the process of developing materials and how the materials are used.

The materials will include professionally-produced videos exemplifying a particular mathematical practice being implemented in a classroom as well as printed dialogues that are designed to help teachers understand the practice and why it is critical for students to acquire that mathematical practice. The exemplars of mathematical practices are being developed based on pilot work and systematic advice from mathematicians, mathematics educators and mathematics teachers in grades 5-10. The design process is iterative and materials are refined based on feedback that is received. Facilitators are being prepared to conduct professional development and materials are being tested by more than 150 teachers in a variety of school districts.

Professional groups such as NCTM and NCSM have called for materials that exemplify the CCSS mathematical practices. They have argued that teachers need to understand how these standards can be achieved in classrooms. IMPS systematic effort to design materials that exemplify the standards and to test not only the materials but also the professional development associated with the materials is responding to the national need. The videos and dialogues will be available through broad dissemination.

Cyber-Enabled Learning: Digital Natives in Integrated Scientific Inquiry Classrooms (Collaborative Research: Wang)

This project investigated the professional development needed to make teachers comfortable teaching with multi-user simulations and communications that students use every day. The enactment with OpenSim (an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics) also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with all selected cyber-enabled cognitive tools framed by constructivism, such as GoogleEarth and Biologica.

Award Number: 
1020091
Funding Period: 
Wed, 09/01/2010 to Wed, 08/31/2011
Project Evaluator: 
HRI
Full Description: 

There is an increasing gap between the assumptions governing the use of cyber-enabled resources in schools and the realities of their use by students in out of school settings. The potential of information and communications technologies (ICT) as cognitive tools for engaging students in scientific inquiry and enhancing teacher learning is explored. A comprehensive professional development program of over 240 hours, along with follow-up is used to determine how teachers can be supported to use ICT tools effectively in classroom instruction to create meaningful learning experiences for students, reducing the gap between formal and informal learning and improve student learning outcomes. In the first year, six teachers from school districts - two in Utah and one in New York - are educated to become teacher leaders and advisors. Then three cohorts of 30 teachers matched by characteristics are provided professional development and field test units over two years in a delayed-treatment design. Biologists from Utah State University and New York College of Technology develop four modules that meet the science standards for both states - the first being changes in the environment. Teachers are guided to develop additional modules. The key technological resource to be used in the project is the Opensimulator 3D application Server (OpenSim), an open source, modular, expandable platform used to create simulated 3D spaces with customizable terrain, weather and physics. 

The research methodology includes the use of the classroom observations using RTOP and Technology Use in Science Instruction (TUSI), selected interviews of teachers and students and validated assessments of student learning. Evaluation, by an external evaluator, assesses the quality of the professional development and the quality of the cyber-enabled learning resources, as well as reviews the research design and implementation. An Advisory Board will monitor the project. 

The project is to determine the professional development needed to make teachers comfortable teaching with multi-user simulations and communications that students use everyday. The enactment with OpenSim also provides an opportunity to demonstrate the level of planning and preparation that go into fashioning modules with all selected cyber-enabled cognitive tools framed by constructivism, such as GoogleEarth and Biologica.

Professional Development for Culturally Relevant Teaching and Learning in Pre-K Mathematics

This project is creating and studying a professional development model to support preK teachers in developing culturally and developmentally appropriate practices in counting and early number. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses counting and basic number operations with the intention of exploring the domain as it connects to children's experiences in their homes and communities.

Award Number: 
1019431
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2018
Project Evaluator: 
Victoria Jacobs
Full Description: 

Developers and researchers at the University of Wisconsin are creating and studying a professional development model that connects research in counting and early number (CGI), early childhood, and funds of knowledge. The proposed model is targeted at teachers of children in four-year-old kindergarten, and focuses on culturally relevant teaching and learning. The model stresses a specific, circumscribed content domain - counting and basic number operations - with the intention of exploring the domain in depth particularly as it connects to children's experiences in their homes and communities and how it is learned and taught through play.

The project designs, develops, and tests innovative resources and models for teachers to support ongoing professional learning communities. These learning communities are designed to identify and build on the rich mathematical understandings of all pre-K children. The project's specific goals are to instantiate a reciprocal "funds of knowledge" framework for (a) accessing children's out-of-school experiences in order to provide instruction that is equitable and culturally relevant and (b) developing culturally effective ways to support families in understanding how to mathematize their children's out-of-school activities. Teachers are observed weekly during the development and evaluation process and student assessments are used to measure students' progress toward meeting project benchmarks and the program's effectiveness in reducing or eliminating the achievement gap.

The outcome is a complete professional development model that includes written and digital materials. The product includes case studies, classroom video, examples of student work, and strategies for responding to students' understandings.

Pages

Subscribe to Video