Software

Meaningful Support for Teachers: Specific Ways to Encourage Game-Based Learning in the Classroom

Day: 
Tues

Panelists from three projects share lessons learned in guiding game use in classroom learning, highlighting specific examples of effective resources.

Date/Time: 
9:45 am to 11:45 am
2014 Session Types: 
Collaborative Panel Session
Session Materials: 

The three panelists in this session are in the last one or two years of their game-based learning projects, and all have done extensive work in supporting use of their games in classroom learning. As their work has progressed, each has discovered valuable ways to support teachers as well as encountered surprises in what teachers wanted (and didn’t want), and now recognize things they wished they had learned in the beginning of their projects. Session participants leave with recommendations they can use in their current projects, including:

GeniVille: Exploring the Intersection of School and Social Media

This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, an educational virtual word in which students can engage in a wide variety of science activities and games.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1238625
Funding Period: 
Mon, 10/01/2012 to Tue, 09/30/2014
Full Description: 

This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille, developed and studied by the Concord Consortium, is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, developed and studied by Numedeon, Inc., an educational virtual word in which students can engage in a wide variety of science activities and games. Genivers has been extensively researched in its implementation in the middle school science classroom. Research on Whyville has focused on how the learning environment supports the voluntary participation of students anywhere and anytime. This project seeks to develop an understanding of how these two interventions can be merged together and to explore mechanisms to create engagement and persistence through incentive structures that are interwoven with the game activities. The project examines the evidence that students in middle schools in Boston learn the genetics content that is the learning objective of GeniVille.

The project uses an iterative approach to the modification of Geniverse activites and the Whyville context so that the structured learning environment is accessible to students working collaboratively within the less structured context. The modification and expansion of the genetics activities of the project by which various inheritance patterns of imaginary dragons are studied continues over the course of the first year with pilot data collected from students who voluntarily engage in the game. In the second year of the project, teachers from middle schools in Boston who volunteer to be part of the project will be introduced to the integrated learning environment and will either use the virtual learning environment to teach genetics or will agree to engage their students in their regular instruction. Student outcomes in terms of engagement, persistence and understanding of genetics are measured within the virtual learning environment. Interviews with students are built into the GeniVille environment to gauge student interest. Observations of teachers engaging in GeniVille with their students are conducted as well as interviews with participating teachers.

This research and development project provides a resource that blends together students learning in a computer simulation with their working in a collaborative social networking virtual system. The integration of the software system is designed to engage students in learning about genetics in a simulation that has inherent interest to students with a learning environment that is also engaging to them. The project leverages the sorts of learning environments that make the best use of online opportunities for students, bringing rich disciplinary knowledge to educational games. Knowing more about how students collaboratively engage in learning about science in a social networking environment provides information about design principles that have a wide application in the development of new resources for the science classroom.

Learning Mathematics of the City in the City

This project is developing teaching modules that engage high school students in learning and using mathematics. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation helps students connect their everyday and school mathematical thinking. Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222430
Funding Period: 
Sat, 09/01/2012 to Mon, 08/31/2015
Full Description: 

Learning Mathematics of the City in The City is an exploratory project that is developing teaching modules that engage high school students in learning mathematics and using the mathematics they learn. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation is helping students connect their everyday and school mathematical thinking.

Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools. Specifically, researchers want to understand how place-based learning helps students apply mathematics to address questions about their local environment. Researchers are also learning about the opportunities for teaching mathematics using carefully planned lessons enhanced by geo-spatial technologies. Data are being collected through student interviews, classroom observations, student questionnaires, and student work.

As the authors explain, "The use of familiar or engaging contexts is widely accepted as productive in the teaching and learning of mathematics." By working in urban neighborhoods with large populations of low-income families, this exploratory project is illustrating what can be done to engage students in mathematics and mathematical thinking. The products from the project include student materials, software adaptations, lesson plans, and findings from their research. These products enable further experimentation with place-based mathematics learning and lead the way for connecting mathematical activities in school and outside of school.

Unifying Life: Placing Urban Tree Diversity in an Evolutionary Context

This 3-year project seeks to develop and test curricular resources built around handheld mobile technology to study how these materials foster urban middle school student engagement with and learning of local biodiversity and the patterns of evolution.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1221188
Funding Period: 
Sun, 07/15/2012 to Tue, 06/30/2015
Full Description: 

City College of New York (CUNY) is conducting a 3-year exploratory project to develop and test curricular resources built around handheld mobile technology to study how these materials foster urban middle school student interest and engagement with local biodiversity and the patterns of evolution. The project aims to develop curricular resources for middle school students around Leafsnap, an iPhone tree identification app, through a co-design process; to pilot test curricular resources in the classrooms of three New York middle school teachers; to develop and revise assessment tools to measure student outcomes; and to field-test curricular resources in the classrooms of ten New York middle school teachers and analyze results to determine how the Leafsnap curriculum affects urban middle school student learning of biodiversity and the patterns of evolution. The results will be used to modify and disseminate curriculum online with the Leafsnap app.

During the project's first year, the curricular resources will be used in two East Harlem middle schools. In the second year, the resources will be used in the classrooms of ten New York City (NYC) public middle school teachers. In the third year, these resources will be integrated into a life science for middle school teachers course as part of CUNY's graduate program in secondary science education, a program specifically designed to prepare teacher candidates for careers in NYC public middle schools. Also, in the project's third year, the curricular resources will be disseminated through the Leafsnap website to a wider online audience.

The project advances understanding of underrepresented urban middle school student learning of local biodiversity in a historical evolutionary context by addressing the three major dimensions of the new Framework for K-12 Science Learning: core science content, the practice of science, and concepts that crosscut all scientific disciplines. Pre- and post-treatment clinical interviews with students will be conducted to provide qualitative insights into how use of the Leafsnap curriculum impacts students' understanding and motivation for identifying and organizing tree diversity.

ScratchJr: Computer Programming in Early Childhood Education as a Pathway to Academic Readiness and Success (Collaborative Research: Bers)

This project is researching and developing a new version of the Scratch programming language to be called ScratchJr, designed specifically for early childhood education (K-2). This work will provide research-based evidence regarding young children's abilities to use an object-oriented programming language and to study the impact this has on the children's learning of scientific concepts and procedures.

 

Project Email: 
Lead Organization(s): 
Award Number: 
1118664
Funding Period: 
Mon, 08/01/2011 to Thu, 07/31/2014
Full Description: 

This collaborative project between Tufts University and the Massachusetts Institute of Technology is researching and developing a new version of the Scratch programming language to be called ScratchJr, designed specifically for early childhood education (K-2). The current version of Scratch, which is widely implemented, is intended for ages 8-16 and is not developmentally appropriate for young children. This work will provide research-based evidence regarding young children's abilities to use an object-oriented programming language and to study the impact this has on the children's learning of scientific concepts and procedures. The team will develop ScratchJr in an iterative cycle, testing it in both in the Devtech lab at Tufts and the Eliot Pearson lab school and with a wider network of early childhood partners. At the end of the three-year project, ScratchJr will have been tested with approximately 350 students in K-2, 40 parents, and 58 early childhood educators.

ScratchJr will have three components: 1) a developmentally appropriate interface, with both touch screen and keyboard/mouse options; 2) an embedded library of curricular modules with STEM content to meet federal and state mandates in early childhood education; and 3) an on-line resource and community for early childhood educators and parents. The research questions focus on whether ScratchJr can help these young children learn foundational knowledge structures such as sequencing, causality, classification, composition, symbols, patterns, estimation, and prediction; specific content knowledge; and problem solving skills.

This interdisciplinary proposal makes contributions to the fields of learning technologies, early childhood education and human computer interaction. ScratchJr has the potential for broad implementation in both formal and informal settings.

Enhancing Games with Assessment and Metacognitive Emphases (EGAME)

This development and research project designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

Lead Organization(s): 
Award Number: 
1119290
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

This development and research project from Vanderbilt University, Facet Innovations, and Filament Games, designs, develops, and tests a digital game-based learning environment for supporting, assessing and analyzing middle school students' conceptual knowledge in learning physics, specifically Newtonian mechanics. This research integrates work from prior findings and refines computer assisted testing and Hidden Markov Modeling to develop a new methodology to engage students in deep learning while diagnosing and scaffolding the learning of Newtonian mechanics.

The project uses a randomized experimental 2 x 1 design comparing a single control condition to a single experimental condition with multiple iterations to test the impact of the game on the learning of Newtonian physics. Using designed based research with teachers and students, the researchers are iteratively developing and testing the interactions and knowledge acquisition of students through interviews, pre and post tests and stealth assessment. Student learner action logs are recorded during game-play along with randomized student interviews. Students' explanations and game-play data are collected and analyzed for changes in domain understanding using pre-post tests assessment.

The project will afford the validation of EGAME as an enabler of new knowledge in the fields of cognition, conceptual change, computer adaptive testing and Hidden Markov Modeling as 90 to 300 middle school students learn Newtonian mechanics, and other science content in game-based learning and design. The design of this digital game platform encompasses a very flexible environment that will be accessible to a diverse group of audiences, and have a transformational affect that will advance theory, design and practice in game-based learning environments.

ScratchJr: Computer Programming in Early Childhood Education as a Pathway to Academic Readiness and Success (Collaborative Research: Resnick)

This project is researching and developing a new version of the Scratch programming language to be called ScratchJr, designed specifically for early childhood education (K-2). This work will provide research-based evidence regarding young children's abilities to use an object-oriented programming language and to study the impact this has on the children's learning of scientific concepts and procedures. 

Project Email: 
Award Number: 
1118682
Funding Period: 
Mon, 08/01/2011 to Thu, 07/31/2014
Project Evaluator: 
Ponte & Chau
Full Description: 

This collaborative project between Tufts University and the Massachusetts Institute of Technology is researching and developing a new version of the Scratch programming language to be called ScratchJr, designed specifically for early childhood education (K-2). The current version of Scratch, which is widely implemented, is intended for ages 8-16 and is not developmentally appropriate for young children. This work will provide research-based evidence regarding young children's abilities to use an object-oriented programming language and to study the impact this has on the children's learning of scientific concepts and procedures. The team will develop ScratchJr in an iterative cycle, testing it in both in the Devtech lab at Tufts and the Eliot Pearson lab school and with a wider network of early childhood partners. At the end of the three-year project, ScratchJr will have been tested with approximately 350 students in K-2, 40 parents, and 58 early childhood educators. ScratchJr will have three components: 1) a developmentally appropriate interface, with both touch screen and keyboard/mouse options; 2) an embedded library of curricular modules with STEM content to meet federal and state mandates in early childhood education; and 3) an on-line resource and community for early childhood educators and parents. The research questions focus on whether ScratchJr can help these young children learn foundational knowledge structures such as sequencing, causality, classification, composition, symbols, patterns, estimation, and prediction; specific content knowledge; and problem solving skills. This interdisciplinary proposal makes contributions to the fields of learning technologies, early childhood education and human computer interaction. ScratchJr has the potential for broad implementation in both formal and informal settings.

Training Teachers in the Effective Mathematical and Pedagogical Uses of Software: Perspectives from the Dynamic Number and Dynamic Geometry in Classrooms Projects

Day: 
Thu

This presentation explores technology training in relation to two DR K-12 projects with a focus on increasing the mathematical and pedagogical content knowledge of teachers.

Date/Time: 
2:00 pm to 4:00 pm
Session Type: 
Panel
Session Materials: 

How can professional development that is focused on technology move beyond the nuts and bolts of the particular tool to a deeper look into the mathematical and pedagogical opportunities afforded by the technology?     This presentation explores technology training in relation to two DR K–12 projects with a focus on increasing the mathematical and pedagogical content knowledge of teachers.

Expanding PhET Interactive Science Simulations to Grades 4-8: A Research-Based Approach

Colorado’s PhET project and Stanford’s AAALab will develop and study learning from interactive simulations designed for middle school science classrooms. Products will include 35 interactive sims with related support materials freely available from the PhET website; new technologies to collect real-time data on student use of sims; and guidelines for the development and use of sims for this age population. The team will also publish research on how students learn from sims.

Project Email: 
Lead Organization(s): 
Award Number: 
1020362
Funding Period: 
Wed, 09/01/2010 to Sat, 08/31/2013
Project Evaluator: 
Stephanie Chasteen
Full Description: 

In this DRK12 project, the PhET Interactive Simulations group at the University of Colorado and the AAALab at Stanford University are working together to produce and study learning from interactive simulations designed for middle school science classrooms. We are developing a suite of 35 high-quality, interactive simulations covering physical science topics. These simulations include innovative technologies that provide teachers with real-time, formative feedback on how their students are using the simulations.  The research investigates how various characteristics of the simulation design influence student engagement and learning, and how this response varies across grade-level and diverse populations. The research also includes an investigation of different ways of using simulations in class, and how these approaches affect student preparation for future learning when they are no longer using a given simulation.

      The original PhET simulations were designed for college use, but overtime, they have migrated to lower grades.  The current suite of free research-based, interactive PhET science simulations are used over 10 million times per year.  To optimize their utility for middle school science, we are conducting interviews with diverse 4-8th graders using 25 existing PhET simulations to help identify successful design alternatives where needed, and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies are investigating a variety of lesson plans to identify the most promising approach. These studies include controlled comparisons that collect both qualitative and quantitative data.

      On the basis of our emerging design principles, we are developing 10 new simulations in consultation with teachers, who are helping to identify high need areas for simulations. These new simulations also include a back-end data collection capability that can collect, aggregate, and display student patterns of simulation use for teachers and researchers. The design of the data collection and presentation formats depends on an iterative process done in collaboration with teachers to identify the most useful information and display formats. A final evaluation compares student learning with and without this back-end formative assessment technology.   

This project is working to transform the way science is taught and learned in Grades 4-8 so that it is more effective at promoting scientific thinking and content learning, while also being engaging to diverse populations. The project is expected to impact many, many thousands of teachers and students through its production of a suite of 35 free, interactive science simulations optimized for Grades 4-8 along with “activity templates”, guidance, and real time feedback to teachers to support pedagogically effective integration into classrooms. Finally, the intellectual merit of the project is its significant contributions to understanding when, how, and why interactive simulations can be effective learning and research tools.

Embodied STEM Learning Across Technology-Based Learning Environments

This project conducts interdisciplinary research to advance understanding of embodied learning as it applies to STEM topics across a range of current technology-based learning environments (e.g., desktop simulations, interactive whiteboards, and 3D interactive environments). The project has two central research questions: How are student knowledge gains impacted by the degree of embodied learning and to what extent do the affordances of different technology-based learning environments constrain or support embodied learning for STEM topics?

Lead Organization(s): 
Award Number: 
1020367
Funding Period: 
Sun, 08/15/2010 to Sun, 07/31/2011
Project Evaluator: 
Susan Haag
Full Description: 

This project conducts interdisciplinary research to advance understanding of embodied learning as it applies to STEM topics across a range of current technology-based learning environments (e.g., desktop simulations, interactive whiteboards, and 3D interactive environments). The project builds on extensive research, including prior work of the PIs, regarding both embodied learning and statistical learning. The PIs describe embodied learning as engaging the neuromuscular systems of learners as they interact with the world around them visually, aurally, and kinesthetically in order to construct new knowledge structures. Statistical learning is described as the ability to learn, often without intent, which sequences of stimuli are consistent with a set of rules. An example of statistical learning is pattern recognition, which is central to mastery of complex topics in many STEM disciplines including physics and mathematics.

The project has two central research questions: How are student knowledge gains impacted by the degree of embodied learning and to what extent do the affordances of different technology-based learning environments constrain or support embodied learning for STEM topics? To investigate these questions, the PIs are conducting three series of experiments in five phases using two physics topics. The first four phases are developmental and the final phase implements and assesses the two modules in schools (20 plus teachers, 700 plus K-12 students) in Arizona and New York (15 total sites, 10 plus public schools, minimum one Title I school).

The aim of this project is to meld these two research trajectories to yield two key outcomes: 1) basic research regarding embodiment and statistical learning that can be applied to create powerful STEM learning experiences, and 2) the realization of exemplary models and principles to aid curriculum and technology designers in creating learning scenarios that take into account the level of embodiment that a given learning environment affords.

Pages

Subscribe to Software