Curriculum

Secondary Science Teaching with English Language and Literacy Acquisition (SSTELLA)

This is a four-year project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language.

Award Number: 
1316834
Funding Period: 
Thu, 08/01/2013 to Tue, 07/31/2018
Full Description: 

This is a four-year Discovery Research K-12 project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language. It articulates theory and practice related to the teaching of science content and the development of English language and literacy, and provides teachers with models of integrated practice in video cases and curriculum units. To test the efficacy of the study, a longitudinal, mixed-methods, quasi-experimental study is conducted at four institutions: the University of California-Santa Cruz, Arizona State University, the University of Arizona, and the University of Texas at San Antonio.

The three research questions are: (1) What is the impact of the project's pre-service teacher education program on novice secondary science teachers' knowledge, beliefs, and practice from the pre-service program into the second year of teaching?; (2) What is the relationship between science method instructors' fidelity of implementation of the project's practices and novice teachers' outcomes (knowledge, beliefs, and practice)?; and (3) What is the relationship between novice teachers' implementation of project-promoted practices and their students' learning? To answer these questions, the project collects and analyzes quantitative and qualitative data on novice teachers (85 treatment group and 85 control group) over three years utilizing surveys, interviews, observations, and student assessment instruments. Teachers' beliefs and knowledge about teaching science to ELLs are measured using the project-developed Science Teaching Survey, which provides quantitative scores based on a Likert-type scale, and the science teacher interview protocol to provide qualitative data, including the contextual factors affecting implementation of project-promoted practices. Classroom observations are captured through qualitative field notes and the Classroom Observation Rubric--a systematic project-developed observation instrument that measures implementation of the practices. Student learning outcomes are measured using (a) the Woodcock-Muñoz Language Survey (students' proficiency at applying listening, reading, writing, and comprehension abilities); (b) the Literacy in Science Assessment (students' productive use of language in authentic science literacy tasks); (c) the Scientific Sense-Making Assessment (how students make sense of core science ideas through scientific and engineering practices); and (d) appropriate state standardized assessments. In addition, the Opportunity to Learn Survey gauges students' perceptions of implementation of literacy integration, motivation in class, and identity as readers.

Project outcomes are: (a) a research-based and field-tested model for pre-service secondary science teacher education, including resources for science methods courses instructors and pre-service teachers; and (b) valid and reliable instrumentation usable in similar research and development environments.


Project Videos

2019 STEM for All Video Showcase

Title: Preparing Science Teachers to Support English Learners

Presenter(s): Edward Lyon


High Adventure Science: Earths Systems and Sustainability

This project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials.

Project Email: 
Lead Organization(s): 
Award Number: 
1220756
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Project Evaluator: 
Karen Mutch-Jones
Full Description: 

We have entered the Anthropocene, an age when the actions of seven billion humans have increasing influence on the Earth. The High-Adventure Science: Earth Systems and Sustainability project is developing modules for middle school and high school students in Earth and Space Science classes, testing the hypothesis that students who use computational models, analyze real-world data, and engage in building scientific reasoning and argumentation skills are better able to understand Earth science core ideas and how humans impact Earth's systems. The Concord Consortium in partnership with the University of California Santa Cruz and the National Geographic Society are co-developing these modules, conducting targeted research on how the modules enhance students' higher order thinking skills and understanding of human-Earth interactions, and broadly disseminating these materials via far-reaching education networks.

The High-Adventure Science: Earth Systems and Sustainability project is creating online, middle and high school curriculum modules that feature computational models and cover five topics: climate change, fresh water availability, fossil fuel utilization, resource sustainability, and land use management. At the same time, the project team is conducting design studies to look at how specific features, prompts, argumentation and evaluation tools built into the modules affect student understanding of core Earth science concepts. The design studies promote rapid, iterative module development and help to identify features that support student learning, as well as scientific reasoning, scientific argumentation with uncertainty, systems thinking, and model-based experimentation skills. For each module, pre- and posttest data, embedded assessments, student surveys, classroom observations, teacher interviews and surveys, provide important information to rapidly improve module features, content, and usability. The final, high-quality, project materials are being made available to a national audience through the National Geographic Society as well as through the High-Adventure Science: Earth Systems and Sustainability website hosted at the Concord Consortium.

It is essential that students graduate from high school with a solid understanding of the scientific concepts that help explain how humans impact Earth systems, and conversely, how Earth processes impact humans. The High-Adventure Science: Earth Systems and Sustainability project provides a unique, research-based approach to conveying to students core Earth science content, crosscutting concepts, and fundamental practices of science. The resulting online curriculum modules and teacher guides provide exciting examples of next generation Earth science teaching and learning materials, and the research findings provide new insights on how students learn core science concepts and gain critical scientific skills.

Mathematical Knowledge for Equitable Teaching

Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases.

Partner Organization(s): 
Award Number: 
1725551
Funding Period: 
Mon, 10/01/2012 to Fri, 08/31/2018
Full Description: 

Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases. The program includes mini courses of one hour that are spread throughout the program, ending just prior to student teaching.

Building on prior NSF-funded research, the researchers are investigating ways to help preservice teachers of mathematics at the elementary level to learn the mathematics needed for teaching and how to provide equitable instruction that encourages all students to share their mathematical thinking. Based on data collected in this exploratory study, researchers will revise the MQE and improve the validity and reliability of the instrument. They are also developing ways to use the MQE for both assessment and for instruction.

The materials, curriculum, and model produced by this project are helping elementary teachers learn important mathematics and learn to teach that mathematics in an equitable way. Although the model includes mini courses that are taught throughout the program, the materials can easily be adapted to a longer, traditional course for preservice teachers. The revisions of the MQE are producing an observational protocol that has the potential to vastly improve the way researchers study teachers' instructional practices.

This project was previously funded under award #1222843.

Building High School Students’ Understanding of Evolution—Both Common Ancestry and Natural Selection—Through Mathematical Arguments, Evidence-based Explanations, and an Understanding of Heredity

The University of Utah will develop a plan for a model curriculum and associated assessments project that integrates science practices, crosscutting concepts, and core disciplinary ideas through the integration of mathematics and science and the application of appropriate educational technologies. The unit plan and prototype lessons will model ways in which quantitative literacy and the Common Core Standards of Mathematics can be addressed in the biology curriculum.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222869
Funding Period: 
Mon, 10/01/2012 to Wed, 09/30/2015
Full Description: 

The University of Utah will develop a plan for a model curriculum and associated assessments project that integrates science practices, crosscutting concepts, and core disciplinary ideas through the integration of mathematics and science and the application of appropriate educational technologies. The unit plan and prototype lessons will model ways in which quantitative literacy and the Common Core Standards of Mathematics can be addressed in the biology curriculum. This two-year exploratory research project will take place in the general biology classrooms of teachers in Utah, Maryland and Washington, DC.

The project will develop the following: a detailed plan for a new, 5-week curriculum replacement unit for high school biology that helps students build a coherent understanding of evolution; a valid and reliable set of test items to assess students' understanding of the unit's learning goals using Project 2061 and to refine these measures using an iterative process of development, testing, expert review and revision; prototypes of five evolution lessons from the planned unit. In addition a the researchers will conduct a small-scale pilot test of the prototype lessons with diverse student populations.

The unit plan and prototype lessons will be developed using a learning-goals-driven design model that includes iterative rounds of development, analysis for content coherence using American Association for the Advancement of Science (AAAS) Project 2061's valid and reliable analysis procedure, reviews by scientists and teachers, and revision.

The Impact of Early Algebra on Students' Algebra-Readiness (Collaborative Research: Knuth)

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

Award Number: 
1219606
Funding Period: 
Mon, 10/01/2012 to Wed, 09/30/2015
Full Description: 

The Impact of Early Algebra on Students' Algebra-Readiness is a collaborative project at the University of Wisconsin and TERC, Inc. They are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school. This study helps to build our knowledge about the piece of the progression that is just prior to entering middle school where many students begin formal instruction in algebra.

Building on previous research about early algebra learning, researchers will teach a curriculum that was carefully designed to reflect what we know about learning algebraic concepts. Previous research has shown that young children from very diverse backgrounds have the ability to construct algebraic ideas such as equality, representation, generalization, and functions. Researchers are collecting data about students' algebraic knowledge as well as arithmetical knowledge.

We know that the majority of students in the United States struggle with learning formal algebra. By studying the implementation of the research-based curriculum for an extended period of time, researcher's are learning about how algebraic ideas are connected and whether or not early instruction on algebraic ideas will help students learn more formal ideas in middle school.

The Impact of Early Algebra on Students' Algebra-Readiness (Collaborative Research: Blanton)

In this project researchers are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school.

Award Number: 
1219605
Funding Period: 
Mon, 10/01/2012 to Wed, 09/30/2015
Full Description: 

The Impact of Early Algebra on Students' Algebra-Readiness is a collaborative project at the University of Wisconsin and TERC, Inc. They are implementing and studying a research-based curriculum that was designed to help children in grades 3-5 prepare for learning algebra at the middle school level. Researchers are investigating the impact of a long-term, comprehensive early algebra experience on students as they proceed from third grade to sixth grade. Researchers are working to build a learning progression that describes how algebraic concepts develop and mature from early grades through high school. This study helps to build our knowledge about the piece of the progression that is just prior to entering middle school where many students begin formal instruction in algebra.

Building on previous research about early algebra learning, researchers will teach a curriculum that was carefully designed to reflect what we know about learning algebraic concepts. Previous research has shown that young children from very diverse backgrounds have the ability to construct algebraic ideas such as equality, representation, generalization, and functions. Researchers are collecting data about students' algebraic knowledge as well as arithmetical knowledge.

We know that the majority of students in the United States struggle with learning formal algebra. By studying the implementation of the research-based curriculum for an extended period of time, researcher's are learning about how algebraic ideas are connected and whether or not early instruction on algebraic ideas will help students learn more formal ideas in middle school.

Learning Mathematics of the City in the City

This project is developing teaching modules that engage high school students in learning and using mathematics. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation helps students connect their everyday and school mathematical thinking. Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1222430
Funding Period: 
Sat, 09/01/2012 to Mon, 08/31/2015
Full Description: 

Learning Mathematics of the City in The City is an exploratory project that is developing teaching modules that engage high school students in learning mathematics and using the mathematics they learn. Using geo-spatial technologies, students explore their city with the purpose of collecting data they bring back to the formal classroom and use as part of their mathematics lessons. This place-based orientation is helping students connect their everyday and school mathematical thinking.

Researchers are investigating the impact of place-based learning on students' attitudes, beliefs, and self-concepts about mathematics in urban schools. Specifically, researchers want to understand how place-based learning helps students apply mathematics to address questions about their local environment. Researchers are also learning about the opportunities for teaching mathematics using carefully planned lessons enhanced by geo-spatial technologies. Data are being collected through student interviews, classroom observations, student questionnaires, and student work.

As the authors explain, "The use of familiar or engaging contexts is widely accepted as productive in the teaching and learning of mathematics." By working in urban neighborhoods with large populations of low-income families, this exploratory project is illustrating what can be done to engage students in mathematics and mathematical thinking. The products from the project include student materials, software adaptations, lesson plans, and findings from their research. These products enable further experimentation with place-based mathematics learning and lead the way for connecting mathematical activities in school and outside of school.

Modeling Hydrologic Systems in Elementary Science (MoHSES)

This project investigates 3rd-grade students' model-based reasoning about hydrologic systems and how teachers scaffold students' engagement in modeling practices. The research builds upon existing modeling frameworks to guide the development and integration of a long-term conceptual modeling task into the Full Option Science System (FOSS) Water module. The data collected from this project can help inform science curriculum materials development and elementary teacher preparation efforts designed to foster reform-oriented, model-centered elementary science learning environments.

Award Number: 
1443223
Funding Period: 
Sat, 09/01/2012 to Thu, 08/31/2017
Project Evaluator: 
UNL Center for Research on Children, Youth, Families, & Schools
Full Description: 

The Modeling Hydrologic Systems in Elementary Science (MoHSES) project involves research and development to investigate 3rd-grade students' model-based reasoning about hydrologic systems and how teachers scaffold students' engagement in modeling practices. The research builds upon existing modeling frameworks to guide the development and integration of a long-term conceptual modeling task into the Full Option Science System (FOSS) Water module. The participants in the study include ten 3rd-grade elementary teachers recruited from diverse settings. The team utilizes an extensive classroom observation system, in-depth interviews with students and teachers, and student artifacts to investigate the following research questions: (1) How do 3rd-grade students construct, use, evaluate, and revise conceptual models of groundwater systems to reason about geospheric components of the water cycle? (2) Are 3rd-grade students able to construct more scientifically-accurate models of groundwater cycling over time? (3) What instructional strategies do 3rd-grade teachers use to support students' model-based reasoning about groundwater systems?

This research can help build a foundation in model-based reasoning about complex global environmental and scientific phenomena in early learners. Investigations of elementary students' model-based reasoning about the water cycle, are largely absent from the literature. The data collected from this project can help inform science curriculum materials development and elementary teacher preparation efforts designed to foster reform-oriented, model-centered elementary science learning environments. This research also informs the development of learning progressions that account for elementary students' learning within a core component of the Earth Sciences.

Exploring the Efficacy of Engineering is Elementary (E4)

This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The project seeks to determine the core elements of the curriculum that support successful use. The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level.

Lead Organization(s): 
Award Number: 
1220305
Funding Period: 
Sat, 09/15/2012 to Fri, 08/31/2018
Full Description: 

This project is developing evidence about the efficacy of the Engineering is Elementary curriculum under ideal conditions by studying the student and teacher-level effects of implementation. The rigorous level of evidence that is developed in this study has significant utility as a support for the kinds of elementary engineering curricula that are needed as the Next Generation Science Standards come online and emphasize engineering design. The study is a randomized control trial where the assignment of teachers will be to the EiE curricular materials or to a counterfactual condition, the use of more standard design engineering curricular materials. The project studies the impact of the use of the curriculum on student learning and on teachers' use of the curriculum in a fidelity of implementation study to determine the core elements of the curriculum that support successful use. The study examines the implementation of the curricular materials in a number of contexts to more fully understand the conditions under which they work best and to explicate what aspects of such project-based inquiry materials most support student learning.

This study uses a randomized cluster trial to examine the efficacy of the EiE curriculum across 75 schools in the treatment and 75 schools in the control group samples. Two teachers per school are included in one treatment/control condition per school. Outcome measures for students include performances on project-specific measures that have been examined for technical quality of validity and reliability. A set of additional research-based survey instruments validated for use in the EiE context are also used to collect data about students' attitudes, perceptions, interest and motivation toward science and engineering. A robust fidelity of implementation research plan is being implemented that will include teachers surveys, pre and post assessments, teacher logs, as well as student engineering journals and student work from classroom implementation. The fidelity of implementation is further studied with forty treatment and ten control teachers through classroom observations and interviews.

The findings from this study have broad implications for how engineering design curricular can be developed and implemented at the elementary level. Engineering design has not been emphasized in the elementary classroom, lagging behind instruction in science with which teachers are more familiar. The results of this study inform practitioners and policy makers about what works, for whom and under what conditions. Information about the different contexts in which the curriculum has been implemented supports the dissemination of evidence-based research and development practices to strengthen STEM learning for all students.

Constructing and Critiquing Arguments in Middle School Science Classrooms: Supporting Teachers with Multimedia Educative Curriculum Materials

This project is developing Earth and Space Science multimedia educative curriculum materials (MECMs) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The project is investigating the impact of the MECMs on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments.

Project Email: 
Award Number: 
1119584
Funding Period: 
Thu, 09/01/2011 to Sun, 08/31/2014
Project Evaluator: 
Naomi Hupert
Full Description: 

This project between Lawrence Hall of Science and Boston College is developing Earth and Space Science multimedia educative curriculum materials (MECM) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The MECMs include videos, voice-over narratives, diagrammatic representations, images of student writings, and text. The PIs are investigating the impact of the MECMS on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question, with four sub questions, focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments. The four sub questions are: What factors impact teachers' implementation of argumentation instruction in the classroom? How can MECMs be designed to positively impact teachers' beliefs and their pedagogical content knowledge (PCK) about argumentation? What is the relationship between teachers' beliefs about the value of argumentation and their implementation of argumentation in the classroom? What impact do MECMs have on teachers' beliefs and PCK?

A mixed method approach is being used to assess teachers' beliefs and pedagogical content knowledge. The PIs are developing and pilot testing teachers' beliefs about scientific argumentation. They will use an iterative design process for the MECMs that will involve 50 teachers. Twenty-five phone interviews will be conducted to investigate factors that impact teachers' implementations of scientific argumentation. Three iterative cycles of design and testing include focus groups, a pilot of the MECMs in six classrooms, and a national field test of 30 classrooms. One hundred teachers will field test the assessment followed by collection of six case studies and data analyses. The project's formative and summative evaluations include monitoring and providing feedback for all activities, and assessments of program implementation and impact.

Teachers need support using field tested multimedia educative materials (MECMs) in learning and delivering science content using a scientific argumentation process. By delivering and engaging the teaching and learning process through iterative design of Earth and Space Science multimedia educative curriculum materials, this project would provide, if successful, teachers and students with the necessary literacy and knowledge about scientific argumentation. The MECMs and approach has the potential for broad implementation in middle schools and beyond for delivering Earth and Space science material to support and teach scientific argumentation.

Pages

Subscribe to Curriculum