Curriculum

Mathematics Instruction Using Decision Science and Engineering Tools

A collaboration among educators, engineers, and mathematicians in three universities, this project is creating, implementing, and evaluating a one-year curriculum for teaching a non-calculus, fourth-year high school mathematics course and accompanied assessment instruments. The curriculum will draw on decision-making tools that include but go well beyond linear programming, to enhance student mathematical competence (particularly solving multi-step problems), improve students' attitudes toward mathematics, and promote states' adoption of the curriculum (initially NC and MI).

Project Email: 
Award Number: 
0733137
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Project Evaluator: 
Dr. Shlomo S. Sawilowsky
Full Description: 

Mathematics INstruction using Decision Science and Engineering Tools (MINDSET) is a collaboration among educators, engineers, and mathematicians at three universities to create, implement, and evaluate a new curriculum and textbook to teach standard mathematics concepts using math-based decision-making tools for a non-calculus fourth-year mathematics curriculum that several states now require and others may require in the near future. MINDSET has three goals: (1) enhancement of students’ mathematical ability, especially their ability to formulate and solve multi-step problems and interpret results; (2) improvement in students’ attitude toward mathematics, especially those from underrepresented groups, thereby motivating them to study mathematics; and (3) adoption of the curriculum initially in North Carolina and Michigan, then in other states.

Using decision-making tools from Operations Research and Industrial Engineering, we will develop a fourthyear high school curriculum in mathematics and support materials to teach standard content. Through a multi-state, multi-school district assessment, we will determine if a statistically significant improvement in students’ mathematical ability—particularly in multi-step problem solving and interpretation of results—and in motivation and attitude toward mathematics has occurred. Participating teachers will receive professional training, help to create a knowledge-based online community for support, and in-person and online technical assistance. Through extensive data collection and analysis, we will determine if this infrastructure is sustainable and sufficiently flexible to be reproduced and used by others.

Radford Outdoor Augmented Reality (ROAR) Project: Immersive Participatory Augmented Reality Simulations for Teaching and Learning Science

This project anticipates the needs of learners in 10 years by developing and testing two learning simulations that are immersive, interactive, and participatory and use augmented reality in the outdoors. Students work in teams to investigate phenomena and solve problems in a gaming environment using wireless handheld GPS units. Using a design-based, mixed-methods approach, the researchers examine the relationships among augmented reality, learning in science, socio-emotional outcomes, and the demographic characteristics of rural, underserved students.

Project Email: 
Lead Organization(s): 
Award Number: 
0822302
Funding Period: 
Mon, 09/15/2008 to Tue, 08/31/2010
Full Description: 

This project anticipates the needs of learners in 10 years by developing and testing two learning simulations that are immersive, interactive, and participatory and use augmented reality in the outdoors. Students work in teams to investigate phenomena and solve problems in a gaming environment using wireless handheld GPS units. Using a design-based, mixed-methods approach, the researchers examine the relationships among augmented reality, learning in science, socio-emotional outcomes, and the demographic characteristics of rural, underserved students.

Nurturing Multiplicative Reasoning in Students with Learning Disabilities in a Computerized Conceptual-modeling Environment (NMRSD-CCME)

The purpose of this project is to create a research-based model of how students with learning disabilities (LDs) develop multiplicative reasoning via reform-oriented pedagogy; convert the model into a computer system that dynamically models every students’ evolving conceptions and recommends tasks to promote their advancement to higher level, standard-based multiplicative structures and operations; and study how this tool impacts student outcomes.

Project Email: 
Lead Organization(s): 
Award Number: 
0822296
Funding Period: 
Fri, 08/01/2008 to Wed, 07/31/2013
Project Evaluator: 
Dr. C. Brown
Full Description: 

Quality Cyber-enabled, Engineering Education Professional Development to Support Teacher Change and Student Achievement (E2PD)

In this project, a video and audio network links elementary school teachers with researchers and educators at Purdue to form a community of practice dedicated to implementing engineering education at the elementary grades. The research plan includes identifying the attributes of face-to-face and cyber-enabled teacher professional development and community building that can transform teachers into master users and designers of engineering education for elementary learners.

Lead Organization(s): 
Award Number: 
0822261
Funding Period: 
Mon, 09/15/2008 to Tue, 08/31/2010
Project Evaluator: 
Rose Marra, University of Missouri-Columbia

PUM (PhysicsUnionMathematics) Exploration

The PuM project develops and conducts research on a learning continuum for seamless instruction in middle school physical science and high school physics. The ultimate goal is to use physics as the context to develop mathematics literacy, particularly with students from underrepresented populations and special needs students. The research component analyzes the effects of the curriculum on students' learning while simultaneously investigating teachers' pedagogical content knowledge in a variety of forms.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733140
Funding Period: 
Sat, 09/01/2007 to Tue, 08/31/2010

A Longitudinal Randomized Trial Study of Middle School Science for English Language Learners (Project MSSELL) (Collaborative Research: Irby)

Project MSSELL will conduct a two-year randomized trial longitudinal evaluation of an enhanced standards-based science curriculum model. In Year 1, the project will refine and pilot the model based on learnings from its previous developmental phase and implementation with K-3 grade students. In Years 2 and 3, the enhanced model will be implemented and studied with fifth- and sixth-grade students.

Partner Organization(s): 
Award Number: 
0822153
Funding Period: 
Mon, 09/01/2008 to Fri, 08/31/2012
Project Evaluator: 
Dr. David Frances

Learning Progressions for Scientific Inquiry: A Model Implementation in the Context of Energy

The project has had three major areas of focus:  (1) Offering professional development to help elementary and 6th grade teachers become more responsive teachers, attending and responding to their students' ideas and reasoning; (2)  Developing web-based resources (both curriculum and case studies) to promote responsive teaching in science; and (3) research how both teachers and students progress in their ability to engage in science inquiry. 

Lead Organization(s): 
Award Number: 
0732233
Funding Period: 
Tue, 01/01/2008 to Mon, 12/31/2012
Project Evaluator: 
Lawrence Hall of Science

Exploring the Frontiers of Science with Online Telescopes

This project researches the use of cyberinfrastructure to implement a strategy for using online telescopes as a laboratory to engage middle and high school students in cutting edge science research while providing them with significant new opportunities to apply STEM concepts, practice inquiry, and design and learn about the nature of scientific discovery.  

Partner Organization(s): 
Award Number: 
0733252
Funding Period: 
Sat, 09/15/2007 to Tue, 08/31/2010
Project Evaluator: 
Lynn Baum, JCM Associates LLC

Inquiry-based High School Biology Using Sea Urchin Fertilization and Development

This project uses sea urchin embryos to provide a curriculum module for inquiry-based biology. The curriculum is provided via a new open access website. It addresses several of the National Science Content Standards and provides a range of activities suitable for all levels of high school biology. It will provide instructional support materials such as video demonstrations, animations, time lapse videos and image galleries relevant to each exercise, as well as professional development materials.

Lead Organization(s): 
Award Number: 
0454770
Funding Period: 
Fri, 04/01/2005 to Tue, 03/31/2009

Accessing Science Ideas: Enhancing Curriculum to Support Scientific Reasoning of Students with Learning Disabilities

The Accessing Science Ideas (ASI) project is developing and researching content enhancements that support science learning of middle school students with executive function and related learning disabilities.  The goal of ASI research is to measure the extent to which curricular units with content enhancements lead to increased student understanding of science concepts, improved reasoning, and greater confidence.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0822039
Funding Period: 
Fri, 08/15/2008 to Tue, 07/31/2012
Full Description: 

The Accessing Science Ideas (ASI) project is developing and researching content enhancements that support science learning of middle school students with executive function and related learning disabilities. These content enhancements are being designed for and integrated into two Full Option Science System (FOSS) curriculum units, Diversity of Life and Populations and Ecosystems. The goal of ASI research is to measure the extent to which curricular units with content enhancements lead to increased student understanding of science concepts, improved reasoning, and greater confidence for all students in an inclusive science classroom.  However, we anticipate that the students with executive function challenges who find it particularly difficult to organize and remember information, shift between concrete phenomena and abstract concepts and see relationships among ideas will benefit most.

Content enhancements are instructional strategies and materials that do not change content but rather ‘enhance’ it by making it accessible to all learners. They make ideas more explicit, prompt elaboration, involve students in transforming the information, and make concepts, ideas, and their relationships more concrete.  In this project, we design, pilot, and revise our content enhancements for each unit prior to the field test. 

The study employs an experimental design with randomization at the teacher level.  Teachers in the intervention are provided with training and then use content enhancements while those in the control group teach the FOSS unit as they typically would.  The control group receives training and the content enhancements at the conclusion of the research phase.

Pages

Subscribe to Curriculum