Quantitative

Getting Unstuck: Designing and Evaluating Teacher Resources to Support Conceptual and Creative Fluency with Programming

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming.

Lead Organization(s): 
Award Number: 
1908110
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

The project will create opportunities for teachers to develop programming content knowledge and new understandings of the creative possibilities in computer science education, thereby increasing opportunities for students to develop conceptual and creative fluency with programming. K-12 introductory programming experiences are often highly scaffolded, and it can be challenging for students to transition from constrained exercises to open-ended programming activities encountered later in-and out of-school. Teachers can provide critical support to help students solve problems and develop the cognitive, social, and emotional capacities required for conceptually and creatively complex programming challenges. Teachers - particularly elementary and middle school teachers, especially in rural and Title I schools - often lack the programming content knowledge, skills, and practices needed to support deeper and more meaningful programming experiences for students. Professional development opportunities can cultivate teacher expertise, especially when supported by curricular materials that bridge teachers' professional learning and students' classroom learning. This research responds to these needs, addressing key national priorities for increasing access to high-quality K-12 computer science education for all students through teacher professional development.

The project will involve the design and evaluation of (1) an online learning experience for teachers to develop conceptual and creative fluency through short, daily programming prompts (featuring the Scratch programming environment), and (2) educative curricular materials for the classroom (based on the online experience). The online experience and curricular materials will be developed in collaboration with three 4th through 6th-grade rural or Title I teachers. The project will evaluate teacher learning in the online experience using mixed-methods analyses of pre/post-survey data of teachers' perceived expertise and quantitative analyses of teachers' programs and evolving conceptual knowledge. Three additional 4th through 6th-grade teachers will pilot the curricular materials in their classrooms. The six pilot teachers will maintain field journals about their experiences and will participate in interviews, evaluating use of the resources in practice. An ethnography of one teacher's classroom will be developed to further contribute to understandings of the classroom-level resources in action, including students' experiences and learning. Student learning will be evaluated through student interviews and analyses of student projects. Project outcomes will inform how computer science conceptual knowledge and creative fluency can be developed both for teachers and their students' knowledge and fluency that will be critical for students' future success in work and life.

Young Mathematicians: Expanding an Innovative and Promising Model Across Learning Environments to Promote Preschoolers' Mathematics Knowledge

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention.

Award Number: 
1907904
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

Far too many children in the U.S. start kindergarten lacking the foundational early numeracy skills needed for academic success. This project contributes to the goal of enhancing the learning and teaching of early mathematics in order to build a STEM-capable workforce and STEM-literate citizenry, which are both crucial to our nation's prosperity and competitiveness. Preparation for the STEM-workforce must start early, as young children's mathematics development undergirds cognitive development, building brain architecture, and supporting problem-solving, puzzling, and persevering, while strongly impacting and predicting future success in school. Preschool children from low socio-economic backgrounds are particularly at risk, as their mathematics knowledge may be up to a full year behind their middle-income peers. Despite agreements about the importance of mathematics-rich interactions for young children's learning and development, most early education teachers and families are not trained in evidence-based methods that can facilitate these experiences, making preschool learning environments (such as school and home) a critical target for intervention. The benefit of this project is that it will develop a robust model for a school-based intervention in early mathematics instruction. The model has the potential to broaden participation by providing instructional materials that support adult-child interaction and engagement in mathematics, explicitly promoting school-home connections in mathematics, and addressing educators' and families' attitudes toward mathematics while promoting children's mathematical knowledge and narrowing opportunity gaps.

The goal of this design and development project is to address the critical need for innovative resources that transform the mathematics learning environments of preschool children from under-resourced communities by creating a cross-context school-home intervention. To achieve this goal, qualitative and quantitative research methodologies will be employed, integrating data from multiple sources and stakeholders. Specifically, the project will: (1) engage in a materials design and development process that includes an iterative cycle of design, development, and implementation, collaborating with practitioners and families in real-world settings; (2) collect and analyze data from at least 40 Head Start classrooms, implementing the mathematics materials to ensure that the classroom and family mathematics materials and resources are engaging, usable, and comprehensible to preschoolers, teachers, and families; and (3) conduct an experimental study that will measure the impact of the intervention on preschool children's mathematics learning. The researchers will analyze collected data using hierarchical linear regression modeling to account for the clustering of children within classrooms. The researchers will also use a series of regression models and multi-level models to determine whether the intervention promotes student outcomes and whether it supports teachers' and families' positive attitudes toward mathematics.

Improving Grades 6-8 Students' Mathematics Achievement in Modeling and Problem Solving through Effective Sequencing of Instructional Practices

This project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning.

Project Email: 
Lead Organization(s): 
Award Number: 
1907840
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

The Researching Order of Teaching project will provide structured and meaningful scaffolds for teachers in examining two research-based teaching strategies hypothesized to positively impact mathematics achievement in the areas of mathematical modeling and problem solving. The first strategy, Explicit Attention to Concepts (EAC), is a set of practices that draw students' attention specifically to mathematical concepts in ways that extend beyond memorization, procedures, or application of skills. This strategy may include teachers asking students to connect multiple mathematical representations, compare solution strategies, discuss mathematical reasoning underlying procedures, or to identify a main mathematical idea in a lesson and how it fits into the broader mathematical landscape. The second strategy, Student Opportunities to Struggle (SOS), entails providing students with time and space to make sense of graspable content, overcoming confusion points, stimulating personal sense-making, building perseverance, and promoting openness to challenge. This strategy may include teachers assigning problems with multiple solution strategies, asking students to look for patterns and make conjectures, encouraging and promoting discourse around confusing or challenging ideas, and asking students for extended mathematical responses. This project investigates whether the order in which teachers apply these practices within the teaching of mathematics content has an impact on student learning. This study builds on previous work that had identified an interaction between the EAC and SOS instructional strategies, and associated teacher reporting of stronger use of the practices with higher student mathematics achievement.

The project will have four key design features. First, the project will adopt and extend the research-based EAC/SOS conceptual framework, and explicitly responds to the call for further research on the interactions. Second, the project will focus on the mathematical areas of modeling and problem solving, two complex and critical competencies for all students in the middle grades. Third, the project will position teachers as collaborators in the research with needed expertise. Finally, the project will make use of research methods from crossover clinical trials to implementation in classrooms. The project aims to identify the affordances and constraints of the EAC/SOS framework in the design and development of instructional practices, to identify student- and teacher-level factors associated with changes in modeling and problem solving outcomes, to analyze teachers' implementations EAC and SOS in teaching modeling and problem solving and to associate those implementation factors with student achievement changes, and to determine whether the ordering of these two strategies correlates with differences in achievement. The project will collect classroom observation data and make use of existing tools to obtain reliable and valid ratings of the EAC and SOS strategies in action.The design of the study features a randomized 2 x 2 cluster crossover trial with a sample of teachers for 80% power. The project builds on existing state infrastructure and relationships with a wide array of school districts in the context of professional development, and aims to create a formal Teacher-Researcher Alliance for Investigating Learning as a part of the project work.

Using Animated Contrasting Cases to Improve Procedural and Conceptual Knowledge in Geometry

This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms.

Award Number: 
1907745
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

This project aims to support stronger student outcomes in the teaching and learning of geometry in the middle grades through engaging students in animated contrasting cases of worked examples. Animated contrasting cases are a set of two worked examples for the same geometry problem, approached in different ways. The animations show the visual moves and annotations students would make in solving the problems. Students are asked to compare and discuss the approaches. This theoretically-grounded approach extends the work of cognitive scientists and mathematics educators who have shown this approach supports strong student learning in algebra. The project will design a series of animated geometry curricular materials on a digital platform that ask students to compare different approaches to solving the same geometry problem. The study will measure changes in students' procedural and conceptual knowledge of geometry after engaging with the materials and will explore the ways in which teachers implement the materials in their classrooms. This work is particularly important as geometry is an understudied area in mathematics education, and national and international assessments at the middle school level consistently identify geometry as a mathematics content area in which students score the lowest.

This project draws on prior work that documents the impact of comparison on students' learning in algebra. Providing students with opportunities to compare multiple strategies is recommended by a range of mathematics policy documents, as research has shown this approach promotes flexibility and enhances conceptual knowledge and procedural fluency. More specifically, the approach allows students to compare the effectiveness and efficiency of mathematical arguments in the context of problem solving. An initial pilot study on non-animated contrasting cases in geometry shows promise for the general approach and suggests that animating the cases has the potential for stronger student learning gains. This study will examine the extent to which the animated cases improve students' conceptual and procedural knowledge of geometry and identify factors that relate to changes in knowledge. The project team will develop 24 worked example contrasting cases based on design principles from the prior work in algebra. The materials will be implemented in four treatment classrooms in the first cycle, revised, and then implemented in eight treatment classrooms. Students' written work will be collected along with data on the nature of the classroom discussions and small-group interviews with students. Teachers' perspectives on lessons will also be collected to support revision and strengthening of the materials. Assessments of students' geometry knowledge will be developed using measures with demonstrated validity and reliability to measure changes in student learning.

CAREER: Expanding Latinxs' Opportunities to Develop Complex Thinking in Secondary Science Classrooms through a Research-Practice Partnership

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. The study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners.

Award Number: 
1846227
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

This project will address the need to educate teachers and students to engage in asking questions, collecting and interpreting data, making claims, and constructing explanations about real-world problems that matter to them. Science educators generally agree that science classrooms should provide opportunities for students to advance their thinking by engaging in critical conversations with each other as capable sense-makers. Despite decades of reform efforts and the use of experiential activities in science instruction, research indicates that classroom learning for students remains largely procedural, undemanding, and disconnected from the development of substantive scientific ideas. Furthermore, access to high-quality science instruction that promotes such complex thinking is scarce for students with diverse cultural and linguistic backgrounds. The project goals will be: (1) To design a year-long teacher professional development program; and (2) To study the extent to which the professional development model improves teachers' capacity to plan and implement inclusive science curricula.

This study will explore ways to enhance youths' learning experiences in secondary school classrooms (grades 6-12) by building a sustainable partnership between researchers and practitioners. The work will build on a previous similar activity with one local high school; plans are to expand the existing study to an entire school district over five years. The proposed work will be conducted in three phases. During Phase I, the study will develop a conceptual framework focused on inclusive science curricula, and implement the new teacher professional development program in 3 high schools with 15 science teachers. Phase II will expand to 6 middle schools in the school district with 24 teachers aimed at creating a continuous and sustainable research-practice partnership approach at the district. Phase III will focus on data analysis, assessment of partnership activities, dissemination, and planning a research agenda for the immediate future. The study will address three research questions: (1) Whether and to what extent does participating teachers' capacity of planning and implementing the curriculum improve over time; (2) How and why do teachers show differential progress individually and collectively?; and (3) What opportunities and constraints within schools and the school district shape teachers' development of their capacity to design and implement curricula? To address the research questions, the project will gather information about the quality of planned and implemented curriculum using both qualitative and quantitative data. Main project's outcomes will be: (1) a framework that guides teachers' engagement in planning and implementing inclusive science curricula; and (2) increased knowledge base on teacher learning. An advisory board will oversee the work in progress. An external evaluator will provide formative and summative feedback.

Using Technology to Capture Classroom Interactions: The Design, Validation, and Dissemination of a Formative Assessment of Instruction Tool for Diverse K-8 Mathematics Classrooms

This project will refine, expand, and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students.

Lead Organization(s): 
Award Number: 
1814114
Funding Period: 
Sat, 09/15/2018 to Wed, 08/31/2022
Full Description: 

An important aspect of mathematics teaching and learning is the provision of timely and targeted feedback to students and teachers on the teaching and learning processes. However, many of the tools and resources focused on providing such feedback (e.g., formative assessment) are aimed at helping students. However, formative assessment of teaching can be equally transformative for teachers and school leaders and is a key component of improved teacher practice. This project will refine, expand and validate a formative assessment tool called Math Habits Tool (MHT) for kindergarten through 8th grade classrooms. MHT is intended to capture and understand patterns of in-the-moment teacher-student and student-student classroom interactions in ways that can promote more equitable access to high quality math learning experiences for all students. The tablet or computer-based tool is intended for use with teacher leaders, principals, coaches, and others interested in assessing teacher practice in a formative way.

This project will continue the development of the MHT through: (1) the integration of an access component; (2) analysis of videos collected during prior studies covering a diverse set of classrooms across the K-8 spectrum; (2) a validation study using validity-argument approach; and (3) the development, piloting, and refinement of professional development modules that will guide math educators, researchers, and practitioners in using the MHT effectively as a formative assessment of instruction. The revised MHT will be validated through analyses of video data from a range of K-8 classrooms with varying demographics and contexts such as socio-economic status, language backgrounds, gender, school settings (e.g., urban, rural, suburban), and race, with particular attention to increasing accessibility to mathematics learning by students who are traditionally underserved, including emergent bilingual students. The data analysis plan involves video coding with multiple checks on reliability, dimensionality analysis with optimal scaling, correlation analysis, and hierarchical linear modeling.

Translating a Video-based Model of Teacher Professional Development to an Online Environment

This project will adapt an effective in-person teacher professional development model to an online approach. A defining feature of the Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development program is its use of videos of classroom instruction and examples of student work to promote teacher learning. Adapting the STeLLA program to an online learning model can reach a broader and more diverse audience, such as teachers working in rural school districts and underserved communities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813127
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Improving the quality of teaching is essential to improving student outcomes. But what are the most effective ways to support teachers' professional development?  BSCS Science Learning and the University of Minnesota STEM Education Program Area explore this question by adapting an effective teacher professional development model -- that meets face-to-face in real-time -- to an online approach. A defining feature of the Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development program is its use of videos of classroom instruction and examples of student work to promote teacher learning. Skilled facilitators guide teachers' analysis and discussion of other teachers' work; then, teachers begin to apply the analytical techniques they have learned to their own teaching. Adapting the STeLLA program to an online learning model is important because it can reach a broader and more diverse audience such as teachers working in rural school districts and underserved communities. To further promote the reach of STeLLA, the online version of STeLLA will engage and prepare teacher leaders to support their peers' engagement and understanding.

Guided by theories of situated cognition and cognitive apprenticeship this project focuses on two questions: How can the STeLLA professional development model be adapted to an online environment? and Does participation in the online model show meaningful teacher and student outcomes related to science teaching and learning? Challenges related to adaptation include understanding the duration and intensity of teacher engagement, the quality of their science content learning experiences, and how teacher learning is scaffolded across the online and traditional model. The project will unfold in two phases. Phase 1 uses a design-based research approach to rapidly enact, test, and revise online program components while remaining true to the design principles underlying the traditional STeLLA PD program. Phase 2 uses a quasi-experimental approach to test STeLLA Online's influence on teacher content knowledge, pedagogical content knowledge, practice and on upper elementary student science achievement. Comparisons will be made between STeLLA Online, face-to-face STeLLA, and a traditional professional development program that emphasizes deepening content knowledge only. This comparison leverages data from a previously-completed cluster randomized trial of STeLLA funded by the NSF.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Building Middle School Students' Understanding of Heredity and Evolution

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

Lead Organization(s): 
Award Number: 
1814194
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules. The planned research will also examine whether student understanding of evolution depends on the length and time of exposure to learning about heredity prior to learning about evolution.

This Early Stage Design and Development project will develop two new 3-week middle school curriculum units, with one focusing on heredity and the other focusing on evolution. The units will include embedded formative and summative assessment measures and online teacher support materials. These units will be developed as part of a curriculum learning progression that will eventually span the elementary grades through high school. This curriculum learning progression will integrate heredity, evolution, data analysis, construction of scientific explanations, evidence-based argumentation, pattern recognition, and inferring cause and effect relationships. To inform development and iterative revisions of the units, the project will conduct nation-wide beta and pilot tests, selecting schools with broad ranges of student demographics and geographical locations. The project will include three rounds of testing and revision of both the student curriculum and teacher materials. The project will also investigate student understanding of evolution in terms of how their understanding is impacted by conceptual understanding of heredity. The research to be conducted by this project is organized around three broad research questions: (a) In what ways can two curriculum units be designed to incorporate the three dimensions of science learning and educative teacher supports to guide students' conceptual understanding of heredity and evolution? (b) To what extent does student understanding of evolution depend on the length and timing of heredity lessons that preceded an evolution unit? And (c) In what ways do students learn heredity and evolution?

LabVenture - Revealing Systemic Impacts of a 12-Year Statewide Science Field Trip Program

This project will examine the impact of a 12-year statewide science field trip program called LabVenture, a hands-on program in discovery and inquiry that brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) to become fully immersed in explorations into the complexities of local marine science ecosystems.

Award Number: 
1811452
Funding Period: 
Sat, 09/01/2018 to Thu, 08/31/2023
Full Description: 

This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

Pages

Subscribe to Quantitative