Design & Development

Sensing Science through Modeling: Developing Kindergarten Students' Understanding of Matter and Its Changes

This project will develop a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.

Lead Organization(s): 
Award Number: 
1621299
Funding Period: 
Sat, 10/01/2016 to Wed, 09/30/2020
Full Description: 

Despite recent research demonstrating the capacity of young children to engage deeply with science concepts and practices, challenging science curriculum is often lacking in the early grades. This project addresses this gap by developing a technology-supported, physical science curriculum that will facilitate kindergarten students' conceptual understanding of matter and how matter changes. To accomplish these goals, the curriculum will include opportunities for students to participate in model-based inquiry in conjunction with the use of digital probeware and simulations that enable students to observe dynamic visualizations and make sense of the phenomena. To support the capacity of kindergarten teachers, a continuous model of teacher development will be implemented.

Throughout development, the project team will collaborate with kindergarten teachers and more than 300 demographically diverse students across eight classrooms in Massachusetts and Indiana. A design based research approach will be used to iteratively design and revise learning activities, technological tools, and assessments that meet the needs and abilities of kindergarten students and teachers. The project team will: 1) work with kindergarten teachers to modify an existing Grade 2 curricular unit for use with their students; 2) design a parallel curricular unit incorporating technology; 3) evaluate both units for feasibility and maturation effects; and 4) iteratively revise and pilot an integrated unit and assess kindergarten student conceptual understanding of matter and its changes. The results of this investigation will contribute important data on the evolving structure and content of children's physical science models as well as demonstrate children's understanding of matter and its changes.

Building a Next Generation Diagnostic Assessment and Reporting System within a Learning Trajectory-Based Mathematics Learning Map for Grades 6-8

This project will build on prior funding to design a next generation diagnostic assessment using learning progressions and other learning sciences research to support middle grades mathematics teaching and learning. The project will contribute to the nationally supported move to create, use, and apply research based open educational resources at scale.

Award Number: 
1621254
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

This project seeks to design a next generation diagnostic assessment using learning progressions and other research (in the learning sciences) to support middle grades mathematics teaching and learning. It will focus on nine large content ideas, and associated Common Core State Standards for Mathematics. The PIs will track students over time, and work within school districts to ensure feasibility and use of the assessment system.

The research will build on prior funding by multiple funding agencies and address four major goals. The partnership seeks to address these goals: 1) revising and strengthening the diagnostic assessments in mathematics by adding new item types and dynamic tools for data gathering 2) studying alternative ways to use measurement models to assess student mathematical progress over time using the concept of learning trajectories, 3) investigating how to assist students and teachers to effectively interpret reports on math progress, both at the individual and the class level, and 4) engineering and studying instructional strategies based on student results and interpretations, as they are implemented within competency-based and personalized learning classrooms. The learning map, assessment system, and analytics are open source and can be used by other research and implementation teams. The project will exhibit broad impact due to the number of states, school districts and varied kinds of schools seeking this kind of resource as a means to improve instruction. Finally, the research project contributes to the nationally supported move to create, use, and apply research based open educational resources at scale.

Improving the Implementation of Rigorous Instructional Materials in Middle-Grades Mathematics: Developing a System of Practical Measures and Routines (Collaborative Research: Smith)

The goal of this project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale through a system of practical measures and routines for collecting and using data that both assesses and supports implementation.

Award Number: 
1621238
Funding Period: 
Sat, 10/01/2016 to Thu, 09/30/2021
Full Description: 

The goal of this 5-year research project is to improve the implementation of rigorous instructional materials in middle-grades mathematics at scale. Many projects seek to improve mathematics instruction, but are not able to easily track their efforts at improvement. The primary product of this project will be a system of practical measures and routines for collecting and using data that both assesses and supports the implementation of rigorous instructional materials in middle-grades mathematics. In contrast to research and accountability measures, practical measures are assessments that require little time to administer and can thus be used frequently. The data can be analyzed rapidly so that teachers can receive prompt feedback on their progress, and instructional leaders can use the data to decide where to target resources to support improvement in the quality of instruction and student learning. The system of practical measures and routines will include 1) measures of high-leverage aspects of teachers' instructional practices that have been linked to student learning (e.g., rigor of tasks, quality of students' discourse) and attend to equitable student participation; and 2) measures of high-leverage aspects of key supports for improving the quality of teachers' practice (e.g., quality of professional development; coaching); and 3) a set of routines regarding how to use the resulting data to engage in rapid, improvement efforts. A key principle of the proposed project is that the system of measures and routines can be adapted to a wide range of school and district contexts. This project is supported by the Discovery Research preK-12 (DRK-12) program. The DRK-12 program supports research and development of STEM education innovations and approaches in assessment, learning, and teaching.

The project will establish three research-practice partnerships with five districts, in three different states, that are currently implementing rigorous instructional materials in middle-grades mathematics. Year 1 will focus on the development of a set of practical measures of classroom instruction. Year 2 will focus on testing the use of the classroom measures in the context of supports for teachers' learning, and the development of practical measures of key supports for teachers' learning. Years 3-4 will focus on how the project can "learn our way to scale" (Bryk et al., 2015), which requires strategically implementing measures and routines in increasingly diverse conditions. The project will engage in rapid improvement cycles in which researchers will work alongside district leaders and professional development (PD) facilitators to analyze the data from the measures of both classroom instruction and the quality of support for teacher learning to test the effectiveness of improvements in intended supports for teacher learning and to adjust the design of the support based on data. Across Years 1-4, the project will use recent developments in technology and information visualization to test and improve 1) the collection of practical measures in situ and 2) the design of data representations (or visualizations) that support teachers and leaders to make instructional improvement decisions. In Year 5, the project will conduct formal analyses of the relations between supports for teachers' learning; teachers' knowledge and classroom practices; and student learning.

Learning Evolution through Human and Non-Human Case Studies

This project will develop and test two curriculum units on the topic of evolution for high school general biology courses, with one unit focusing primarily on human case studies to teach evolution and one unit focusing primarily on case studies of evolution in other species. The two units will be compared to examine how different approaches to teaching evolution affect students and teachers.

Lead Organization(s): 
Award Number: 
1621194
Funding Period: 
Thu, 09/15/2016 to Tue, 08/31/2021
Full Description: 

This project aligns with Alabama's College & Career-Ready Standards (CCRS) for biology in grades 9-12 relating to Unity and Diversity. These standards are based on the Next Generation Science Standards (NGSS) and go into effect during the 2016-2017 school year. Building on prior work (DRL-119468), this project will develop and test two curriculum units on the topic of evolution for high school general biology courses, with one unit focusing primarily on human case studies to teach evolution and one unit focusing primarily on case studies of evolution in other species. The two units will be compared to examine how different approaches to teaching evolution affect students and teachers. The project will also develop and field test a Cultural and Religious Sensitivity (CRS) Resource to provide teachers with strategies for creating supportive learning environments where understanding of the scientific account of evolution is aided while also acknowledging the cultural controversy associated with learning about evolution. The impacts on student and teacher outcomes of using the curriculum units and the CRS Resource will be tested in classrooms by comparing the outcomes of the human versus non-human units, and by using or not using classroom strategies from the CRS Resource.

The project will examine student and teacher outcomes of four treatment groups: 1) Curriculum Unit 1, 2) Curriculum Unit 1 with the CRS Resource, 3) Curriculum Unit 2, and 4) Curriculum Unit 2 with the CRS Resource. The research questions are: 1) In what ways does using examples of human versus non-human evolution to teach core evolutionary concepts affect understanding of, acceptance of, and motivation to learn about evolution among high school introductory biology students? 2) In what ways do using teaching strategies that focus on acknowledging the cultural controversy about evolution using a procedural neutrality approach affect high school introductory biology teachers' comfort and confidence with teaching evolution? 3) In what ways does using examples of human versus non-human evolution to teach fundamental evolutionary concepts in conjunction with teaching strategies that focus on acknowledging the cultural controversy about evolution using a procedural neutrality approach affect understanding of, acceptance of, and motivation to learn about evolution among high school introductory biology students? And 4) In what ways does using examples of human versus non-human evolution to teach fundamental evolutionary concepts in conjunction with teaching strategies that focus on acknowledging the cultural controversy about evolution using a procedural neutrality approach affect high school introductory biology teachers' comfort and confidence with teaching evolution? The project will use a 2 X 2 X 2 mixed factorial quasi-experimental research design to answer these questions, and will include a total of 32 teachers, 8 in each treatment group, along with approximately 800 students. Each assessment will be administered as a pretest two weeks prior to starting the curriculum unit and as a posttest immediately after completing the unit. Test scores will be the within-subjects factors, and Curriculum Unit and CRS Resource will be the between-subjects factors.

Geological Models for Explorations of Dynamic Earth (GEODE): Integrating the Power of Geodynamic Models in Middle School Earth Science Curriculum

This project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices.

Lead Organization(s): 
Award Number: 
1621176
Funding Period: 
Mon, 08/15/2016 to Fri, 07/31/2020
Full Description: 

This project will contribute to the Earth science education community's understanding of how engaging students with dynamic computer-based systems models supports their learning of complex Earth science concepts regarding Earth's surface phenomena and sub-surface processes. It will also extend the field's understandings of how students develop modeling practices and how models are used to support scientific endeavors. This research will shed light on the role uncertainty plays when students use models to develop scientific arguments with model-based evidence. The GEODE project will directly involve over 4,000 students and 22 teachers from diverse school systems serving students from families with a variety of socioeconomic, cultural, and racial backgrounds. These students will engage with important geoscience concepts that underlie some of the most critical socio-scientific challenges facing humanity at this time. The GEODE project research will also seek to understand how teachers' practices need to change in order to take advantage of these sophisticated geodynamic modeling tools. The materials generated through design and development will be made available for free to all future learners, teachers, and researchers beyond the participants outlined in the project.

The GEODE project will develop and research the transformational potential of geodynamic models embedded in learning progression-informed online curricula modules for middle school teaching and learning of Earth science. The primary goal of the project is to conduct design-based research to study the development of model-based curriculum modules, assessment instruments, and professional development materials for supporting student learning of (1) plate tectonics and related Earth processes, (2) modeling practices, and (3) uncertainty-infused argumentation practices. The GEODE software will permit students to "program" a series of geologic events into the model, gather evidence from the emergent phenomena that result from the model, revise the model, and use their models to explain the dynamic mechanisms related to plate motion and associated geologic phenomena such as sedimentation, volcanic eruptions, earthquakes, and deformation of strata. The project will also study the types of teacher practices necessary for supporting the use of dynamic computer models of complex phenomena and the use of curriculum that include an explicit focus on uncertainty-infused argumentation.

Development and Empirical Recovery for a Learning Progression-Based Assessment of the Function Concept

The project will design an assessment based on learning progressions for the concept of function - a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses.

Lead Organization(s): 
Award Number: 
1621117
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

The project will design an assessment based on learning progressions for the concept of function. A learning progression describes how students develop understanding of a topic over time. Function is a critical concept for algebra learning and understanding. The goal of the assessment and learning progression design in this project is to specifically incorporate findings about the learning of students traditionally under-served and under-performing in algebra courses. The project will include accounting for the social and cultural experiences of the middle and high school students when creating assessment tasks. The resources developed should impact mathematics instruction (especially for algebra courses) by creating a learning progression which captures the range of student performance and appropriately places them at distinct levels of performance. The important contribution of the work is the development of a learning progression and related assessment tasks that account for the experiences of students often under-served in mathematics. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The learning progression development will begin by comparing and integrating existing learning progressions and current research on function learning. This project will develop an assessment of student knowledge of function based on learning progressions via empirical recovery (looking for the reconstruction of theoretical levels of the learning theory). Empirical recovery is the process through which data will be collected that reconstruct the various levels, stages, or sequences of said learning progression. The development of tasks and task models will include testing computer-delivered, interactive tasks and rubrics that can be used for human and automated scoring (depending on the task). Item response theory methods will be used to evaluate the assessment tasks' incorporation of the learning progression.


Project Videos

2019 STEM for All Video Showcase

Title: Concept of Function Learning Progression

Presenter(s): Edith Graf, Frank Davis, Chad Milner, Maisha Moses, & Sarah Ohls


Organizing to Learn Practice: Teacher Learning in Classroom-Focused Professional Development

This project addresses the fundamental challenge of how to support teachers to improve their practice. The approach uses a "live mathematics classroom" as a common text for working on practice, where participants are not only watching and discussing but are engaged in developing and learning practice. The project will generate new knowledge regarding ways in which elementary teachers of mathematics can be supported to learn effective teaching practice.

Lead Organization(s): 
Award Number: 
1621104
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

Growing evidence about the powerful effects of skillful teaching on students' learning creates a need to for professional development that impacts teachers' actual practice. Just as other professions (e.g., nursing, social work, law) have centered practitioners' learning in "live" practice with structures that support learning in context, the project will investigate whether and how this can be accomplished in teaching. The approach uses a "live mathematics classroom" as a common text for working on practice, where participants are not only watching and discussing but are engaged in developing and learning practice. The project also explores the following variations in practice-based professional development: (1) on-site and remote participation of teachers; and (2) the addition of supplementary practice-focused professional development. The project will generate new knowledge regarding ways in which elementary teachers of mathematics can be supported to learn effective teaching practice.

This project addresses a fundamental challenge for professional development, that is, how to support teachers to improve their practice. Teachers profit from well-designed opportunities to develop new visions for practice, learn more about students' thinking, or work on specific mathematical topics or tasks. Still, such opportunities are often insufficient to support teachers with the complexity of classroom teaching. These kinds of professional opportunities focus on critical resources for instruction but not on the details of teaching practice itself. This practice-centered professional development is situated within a summer mathematics program for fifth graders. The proposed research will explore the impact on teachers' practice, as well as on their knowledge and dispositions, from participating in these structured ways. Three studies will resolve the following three sets of questions: (1) What do teachers learn from structured participation in the class? Does their participation impact their own teaching practice, and if so, in what ways? (2) Does the setting of the peripheral participation matter? Does this form of participation impact their own teaching practice, and if so, in what ways? (3) Does the addition of professional development focused on a particular teaching practice impact teachers' own practice, and if so, in what ways? How does the addition of professional development focused on a specific instructional practice compare across the in-person and online forms of participation in terms of impact on teachers' own practice? The project will collect and analyze several types of data pre- and post-intervention, including measures of mathematical knowledge for teaching, measures of language for talking about the work of teaching and students, and skill with leading a mathematics discussion, and the mathematical quality of instruction. The project will generate new knowledge related to to organizing professional learning around supports that teachers need to learn practice as well as ways to study their learning of teaching practice.

Modest Supports for Sustaining Professional Development Outcomes over the Long-Term

This study will investigate factors influencing the persistence of teacher change after professional development (PD) experiences, and will examine the extent to which modest supports for science teaching in grades K-5 sustain PD outcomes over the long term.

Lead Organization(s): 
Award Number: 
1620979
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

This study will investigate factors influencing the persistence of teacher change after professional development (PD) experiences, and will examine the extent to which modest supports for science teaching in grades K-5 sustain PD outcomes over the long term. Fifty K-12 teachers who completed one of four PD programs situated in small, rural school districts will be recruited for the study, and they will participate in summer refresher sessions for two days, cluster meetings at local schools twice during the academic year, and optional Webinar sessions two times per year. Electronic supports for participants will include a dedicated email address, a project Facebook page, a biweekly newsletter, and access to archived Webinars on a range of topics related to teaching elementary school science. Modest support for replacement of consumable supplies needed for hands-on classroom activities will also be provided. The project will examine the extent to which these modest supports individually and collectively foster the sustainability of PD outcomes in terms of the instructional time devoted to science, teacher self-efficacy in science, and teacher use of inquiry-based instructional strategies. The effects of contextual factors on sustainability of PD outcomes will also be examined.

This longitudinal study will seek answers to three research questions: 1) To what extent do modest supports foster the sustainability of professional development outcomes in: a) instructional time in science; b) teachers' self-efficacy in science; and c) teachers' use of inquiry-based instructional strategies? 2) Which supports are: a) the most critical for sustainability of outcomes; and b) the most cost-effective; and 3) What contextual factors support or impede the sustainability of professional development outcomes? The project will employ a mixed-methods research design to examine the effects of PD in science among elementary schoolteachers over a 10 to 12 year period that includes a 3-year PD program, a 4-6 year span after the initial PD program, and a 3-year intervention of modest supports. Quantitative and qualitative data will be collected from multiple sources, including: a general survey of participating teachers regarding their beliefs about science, their instructional practices, and their instructional time in science; a teacher self-efficacy measure; intervention feedback surveys; electronic data sources associated with Webinars; teacher interviews; school administrator interviews; and receipts for purchases of classroom supplies. Quantitative data from the teacher survey and self-efficacy measure will be analyzed using hierarchical modeling to examine growth rates after the original PD and the change in growth after the provision of modest supports. Data gathered from other sources will be tracked, coded, and analyzed for each teacher, and linked to the survey and self-efficacy data for analysis by individual teacher, by grade level, by school, by district, and by original PD experience. Together, these data will enable the project team to address the project's research questions, with particular emphasis on determining the extent to which teachers make use of the various supports offered, and identifying the most cost-effective and critical supports.

Enhancing Middle Grades Students' Capacity to Develop and Communicate Their Mathematical Understanding of Big Ideas Using Digital Inscriptional Resources (Collaborative Research: Phillips)

This project will develop and test a digital platform for middle school mathematics classrooms to help students deepen and communicate their understanding of mathematics. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class.

Lead Organization(s): 
Award Number: 
1620934
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

The primary goal of this project is to help middle school students deepen and communicate their understanding of mathematics. The project will develop and test a digital platform for middle school mathematics classrooms. The digital platform will allow students to collaboratively create representations of their mathematics thinking, incorporate ideas from other students, and share their work with the class. The digital learning environment makes use of a problem-centered mathematics curriculum that evolved from extensive development, field-testing and evaluation, and is widely used in middle schools. The research will also contribute to understanding about the design and innovative use of digital resources and collaboration in classrooms as an increasing number of schools are drawing on these kinds of tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

The project will support students to collaboratively construct, manipulate, and interpret shared representations of mathematics using digital inscriptional resources. The research activities will significantly enhance our understanding of student learning in mathematics in three important ways. The project will report on how (1) evidence of student thinking is made visible through the use of digital inscriptional resources, (2) student inscriptions are documented, discussed, and manipulated in collaborative settings, and (3) students' conceptual growth of big mathematical ideas grows over time. An iterative design research process will incorporate four phases of development, testing and revision, and will be conducted to study student use of the digital learning space and related inscriptional resources. Data sources will include: classroom observations and artifacts, student and teacher interviews and surveys, student assessment data, and analytics from the digital platform. The process will include close collaboration with teachers to understand the implementation and create revisions to the resources.


Project Videos

2019 STEM for All Video Showcase

Title: Math Understanding in a Digital Collaborative Environment

Presenter(s): Alden Edson, Kristen Bieda, Chad Dorsey, Nathan Kimball, & Elizabeth Phillips


Supporting Instructional Growth in Mathematics: Enhancing Urban Secondary Teachers' Professional Learning through Formative Feedback

This project will explore the potential of video-based formative feedback to enhance professional development around ambitious instruction for secondary teachers in urban schools.

Lead Organization(s): 
Award Number: 
1620920
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

Research continues to show the benefits of ambitious instruction for student learning of mathematics, yet ambitious instruction continues to be rare in U.S. schools, particularly in schools that serve historically marginalized students. Secondary teachers' learning and enactment of ambitious instruction in mathematics requires conceptual change, and their development could benefit from adequate and timely feedback close to classroom instruction. For this reason, the project will explore the potential of video-based formative feedback to enhance professional development. The focus of the partnership between university researchers and a well-regarded professional development organization, Math for America Los Angeles (MfA LA) will be on career-long learning of secondary mathematics teachers in urban schools. Results from this project will provide a theory of mathematics teachers' learning that can inform other instructional improvement efforts, with ecological validity in the critical site of urban schools. The framework and theory will be detailed at the level of specific tools and concrete practices that are learnable by teachers, school leaders, or instructional coaches. This project is funded by the Discovery Research Pre-K-12 Program, which funds research and development of STEM innovations and approaches in assessment, teaching and learning.

The question the project will address is: How can the project use formative feedback to enhance mathematics teachers' professional learning environments that support their development of ambitious instruction in urban schools? Formative feedback refers to tools and processes that ascertain teachers' current understandings and responsively adapt learning activities to better guide them toward their learning goals. Professional learning environments refer to the multiple sites of teachers' learning, from formal professional development activities to their school workplace. Ambitious instruction is defined as teaching approaches that aim to provide all students with ample opportunities to develop conceptual understanding of key mathematical ideas, participate in mathematical argumentation, connect multiple mathematical representations, as well as become fluent with mathematical procedures and processes. The persistence of typical mathematics instruction is framed as, in large part, an issue of teacher learning. Using design-based implementation research and interpretive methods, the project team will co-develop video-based formative assessment processes to guide teachers' evolving classroom practice.

Pages

Subscribe to Design & Development