Pedagogical Content Knowledge

CAREER: Noticing and Using Students' Prior Knowledge in Problem-Based Instruction

This project will develop and study a professional development framework that is designed to help high school geometry teachers attend more carefully to student prior knowledge, interpret the learning implications of student prior knowledge, and adjust teaching practices accordingly. Participating teachers will participate in study groups that analyze animations of productive teaching practices; they will collaborate in planning, implementing, and analyzing geometry lessons; and they will critique videos of their own classroom instruction.

Award Number: 
1253081
Funding Period: 
Wed, 05/15/2013 to Tue, 04/30/2019
Full Description: 

Advocates of problem-based instruction argue that the approach can help students develop a deeper understanding of mathematics, acquire more positive attitudes toward mathematics, and gain experience with more authentic applications of mathematics. Engaging students in problem-based instruction, however, increases challenges to teachers who must attend to the influence of student prior knowledge and adjust instruction accordingly. The proposed project will develop and study a professional development framework that is designed to help high school geometry teachers attend more carefully to student prior knowledge, interpret the learning implications of student prior knowledge, and adjust teaching practices accordingly. Participating teachers will learn to perform these complex tasks by participating in study groups to analyze animations of productive teaching practices; to collaborate in planning, implementing, and analyzing geometry lessons; and to critique videos of their own classroom instruction. Prior research has shown that collective examination of videos can help teachers increase attention on student thinking, a key to noticing and accommodating student prior knowledge.

A key, innovative feature of the professional development framework for this study is the use of animated vignettes of classroom instruction to prepare teachers to examine videos of their own practice. The advantage of using cartoon-based animations of classroom practices is that they can be designed to depict specific teaching actions while excluding the usual distractions in videos, such as physical features, clothing, or individual mannerisms. Also, teachers can develop a critical eye for relevant interactions without feeling the need to be overly polite when discussing fictional scenarios portrayed by cartoon characters. This preliminary practice will also enable teachers to develop a common language about noticing and responding to student prior knowledge before critiquing videos of their own classroom practices.

This project advances knowledge of professional development experiences that help teachers notice and take into account the prior knowledge that students bring to the classroom. Results from studying the effects of coupling analysis of animated vignettes of classroom practices with critiquing videos on one's own classroom practices have the potential to significantly enhance professional development practices among mathematics teachers, as well as teachers in general. Results from the project will be broadly disseminated via conference presentations, articles in diverse media outlets, and a project website that will make project products available, be a location for information about the project for the press and the public, and be a tool to foster teacher-to-teacher communication. The results of this study, as well as the protocols and instruments developed during the research project, will inform and support the researcher's own efforts to better understand and improve teacher learning. The education plan of the researcher focuses on translating the outcomes of this study to the practices of preservice teacher education by connecting instructional decision-making more explicitly to research on student learning, thereby promoting learning trajectory based instruction.

Researching the Efficacy of the Science and Literacy Academy Model (Collaborative Research: Strang)

This project is studying three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos.

Award Number: 
1223021
Funding Period: 
Wed, 08/01/2012 to Sun, 07/31/2016
Full Description: 

This award is doing a research study of three models of professional development (PD) to test the efficacy of a practicum for grade 3-5 in-service teachers organized in three cohorts of 25. Model 1 is a one-week institute based on classroom discourse practices and a 2-week practicum (cohort 1). Model 2 is the one-week institute (cohort 2). Model 3 is a "business as usual" model (cohort 3) based on normal professional development provided by the school district. Cohorts 1 and 2 experience the interventions in year 1 with four follow-up sessions in each of years 2 and 3. In year 4 they receive no PD, but are being observed to see if they sustain the practices learned. Cohort 3 receives no treatment in years 1 and 2, but participates in a revised version of the institute plus practicum in year 3 with four follow up sessions in year 4. The Lawrence Hall of Science provides the professional development, and Stanford University personnel are conducting the research. The teachers come from the Oakland Unified School District. Science content is the GEMS Ocean Sciences Sequence.

There are 3 research questions;

1. In what ways do practicum-based professional development models influence science instructional practice?

2. What differences in student outcomes are associated with teachers' participation in the different PD programs?

3. Is the impact of the revised PD model different from the impact of the original model?

This is a designed-based research model. Teacher data is based on interviews on beliefs about teaching and the analysis of video tapes of their practicum and classroom performance using the Discourse in Inquiry Science Classrooms instrument. Student data is based on the GEMS unit pre- and post-tests and the California Science Test for 5th graders. Multiple analyses are being conducted using different combinations of the data from 8 scales across 4 years.

There will be 75 teachers and their students directly impacted by the project. Additional impacts of the project are research results and professional development materials, including a PD implementation guide and instructional videos. These will be presented in publications and conference presentations and be posted on linked websites at the Lawrence Hall of Science and the Center to Support Excellence in Teaching at Stanford University.

Assessing Secondary Teachers' Algebraic Habits of Mind (Collaborative Research: Stevens)

This collaborative project is developing instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement.

Partner Organization(s): 
Award Number: 
1222496
Funding Period: 
Wed, 08/15/2012 to Sun, 07/31/2016
Full Description: 

Boston University, Education Development Center, Inc., and St. Olaf College are collaborating on Assessing Secondary Teachers' Algebraic Habits of Mind (ASTAHM) to develop instruments to assess secondary teachers' Mathematical Habits of Mind (MHoM). These habits bring parsimony, focus, and coherence to teachers' mathematical thinking and, in turn, to their work with students. MHoM is a critical component of mathematical knowledge for teaching at the secondary level. Recognizing the need for a scientific approach to investigate the ways in which MHoM is an indicator of teacher effectiveness, the partnership is researching the following questions:

1. How do teachers who engage MHoM when doing mathematics for themselves also bring MHoM to their teaching practice?

2. How are teachers' engagement with MHoM and their use of these habits in teaching related to student understanding and achievement?

To investigate these questions, ASTAHM is developing two instruments: a paper and pencil (P&P) assessment and an observation protocol that measure teachers' knowledge and classroom use, respectively, of MHoM.

The work is being conducted in two phases: (1) an instrument-refinement and learning phase, and (2) an instrument-testing and research phase. Objectives of Phase 1 are to gather data to refine the project's existing instruments and to learn about the bridge factors that impact the relationship between teachers' knowledge and classroom use of MHoM. Specific research activities include: administering the pilot P&P assessment to 40 teachers, videotaping Algebra instructions of 8 teachers, performing initial testing and refinement of the instruments, and using the data to analyze the bridge factors. Phase 2 is a large-scale study involving field-testing the P&P assessment with 200 teachers, videotaping 20 teachers and studying them using the observation protocol, collecting achievement data from 3000 students, and checking P&P content validity with 200 mathematicians. With these validated instruments in hand, the project will then conduct an investigation into the above research questions. Lesley University's Program Evaluation and Research Group (PERG) is the external evaluator. PERG is assessing ASTAHM's overall success in developing valid and reliable instruments to investigate the extent to which a relationship exists between teachers' MHoM and their classroom practice, as well as student achievement. Evaluators are also investigating whether users' coding guides for both instruments enable field-testers to effectively use and adequately score them.

This work fits into a larger research agenda with the ultimate goal of understanding the connections between secondary teachers' mathematical knowledge for teaching and secondary students' mathematical understanding and achievement. The MHoM construct is closely aligned with the Common Core State Standards-Mathematics (CCSS-M); especially its Standards for Mathematical Practice. For example, both place importance on seeking and using mathematical structure. Thus the instruments this project produces can act as pre- and post-measures of the effectiveness of professional development programs in preparing teachers to implement the CCSS-M. Mathematics teacher knowledge at the secondary level is an understudied field. Through analyses of the practices and habits of mind that teachers bring to their work, ASTAHM is developing instruments that can be used to shed light on effective secondary teaching.


Project Videos

2019 STEM for All Video Showcase

Title: Studying Teachers' Mathematical Habits of Mind

Presenter(s): Sarah Sword, Eden Badertscher, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2017 STEM for All Video Showcase
Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Sarah Sword, Courtney Arthur, Al Cuoco, Miriam Gates, Ryota Matsuura, & Glenn Stevens

2016 STEM for All Video Showcase

Title: Assessing Secondary Teachers' Algebraic Habits of Mind

Presenter(s): Ryota Matsuura, Al Cuoco, Glenn Stevens, & Sarah Sword


Videocases for Science Teaching Analysis Plus (ViSTA Plus): Efficacy of a Videocase-Based, Analysis-of-Practice Teacher Preparation Program

The new ViSTA Plus study explores implementation of a program for pre-service/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?" The project is producing science-specific, analysis-of-practice materials to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Lead Organization(s): 
Award Number: 
1220635
Funding Period: 
Wed, 08/01/2012 to Sat, 06/30/2018
Full Description: 

Prior studies have demonstrated the positive impact of content-specific videocases of other teachers' practice on science content knowledge and ability to analyze teaching when the videocases are incorporated in the methods courses for preservice teachers. Similar outcomes occurred for experienced, inservice teachers in a year-long professional development that included analyzing video of their own and others' teaching, and these teachers changed their practice in ways that influenced students' science learning. The new ViSTA Plus study explores implementation of a 2-year program for preservice/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?"

ViSTA Plus presents a distinctive version of practice-based teacher education, one that immerses teachers into practice via scaffolded, collaborative analyses of videocases - starting with analysis of other teachers' videocases and moving to collaborative analysis of teachers' own videocases. The ViSTA Plus conceptual framework supports teachers in using Student Thinking and Science Content Storyline Lenses to analyze science teaching and in using a set of teaching strategies that support use of each of these lenses in their planning and teaching. Through this analysis work, teachers deepen their science content knowledge, develop the ability to analyze teaching and learning, and improve their teaching and their students' learning. The current study incorporates a quasi-experimental design to compare the impact of the ViSTA Plus program to that of traditional teacher preparation programs when implemented at universities that serve diverse populations, especially Native American, Hispanic, and low-SES students. Teacher measures are assessing science content knowledge (pre, mid, and posttests), ability to analyze science teaching and learning (pre, mid, and post video analysis tasks), and teaching practice (videorecorded lessons during student teaching and first year of teaching). Elementary students' science achievement is being assessed using pre-post unit tests during student teaching and the first year of teaching.

The study design addresses a gap in the research on preservice teacher preparation by following the pathway of program influence from teacher learning to teaching practice to student learning, and accomplishes this in the context of ViSTA Plus, an alternative, practice-based approach to teacher preparation that embeds all phases of teacher learning in practice from the beginning. Partner universities in this effort are eager to reimagine the traditional teacher preparation sequence, offering new models for the field. The project is producing science-specific, analysis-of-practice materials (videocases, methods course guides, study group guides) to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Constructing and Critiquing Arguments in Middle School Science Classrooms: Supporting Teachers with Multimedia Educative Curriculum Materials

This project is developing Earth and Space Science multimedia educative curriculum materials (MECMs) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The project is investigating the impact of the MECMs on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments.

Project Email: 
Award Number: 
1119584
Funding Period: 
Thu, 09/01/2011 to Sun, 08/31/2014
Project Evaluator: 
Naomi Hupert
Full Description: 

This project between Lawrence Hall of Science and Boston College is developing Earth and Space Science multimedia educative curriculum materials (MECM) and a system to facilitate teachers' learning and beliefs of scientific argumentation. The MECMs include videos, voice-over narratives, diagrammatic representations, images of student writings, and text. The PIs are investigating the impact of the MECMS on teachers' beliefs about scientific argumentation and their related pedagogical content knowledge. The overarching research question, with four sub questions, focuses on how can multimedia educative curriculum materials provide support to middle school science teachers in implementing standards for constructing and critiquing arguments. The four sub questions are: What factors impact teachers' implementation of argumentation instruction in the classroom? How can MECMs be designed to positively impact teachers' beliefs and their pedagogical content knowledge (PCK) about argumentation? What is the relationship between teachers' beliefs about the value of argumentation and their implementation of argumentation in the classroom? What impact do MECMs have on teachers' beliefs and PCK?

A mixed method approach is being used to assess teachers' beliefs and pedagogical content knowledge. The PIs are developing and pilot testing teachers' beliefs about scientific argumentation. They will use an iterative design process for the MECMs that will involve 50 teachers. Twenty-five phone interviews will be conducted to investigate factors that impact teachers' implementations of scientific argumentation. Three iterative cycles of design and testing include focus groups, a pilot of the MECMs in six classrooms, and a national field test of 30 classrooms. One hundred teachers will field test the assessment followed by collection of six case studies and data analyses. The project's formative and summative evaluations include monitoring and providing feedback for all activities, and assessments of program implementation and impact.

Teachers need support using field tested multimedia educative materials (MECMs) in learning and delivering science content using a scientific argumentation process. By delivering and engaging the teaching and learning process through iterative design of Earth and Space Science multimedia educative curriculum materials, this project would provide, if successful, teachers and students with the necessary literacy and knowledge about scientific argumentation. The MECMs and approach has the potential for broad implementation in middle schools and beyond for delivering Earth and Space science material to support and teach scientific argumentation.

Cluster Randomized Trial of the Efficacy of Early Childhood Science Education for Low-Income Children

The research goal of this project is to evaluate whether an early childhood science education program, implemented in low-income preschool settings produces measurable impacts for children, teachers, and parents. The study is determining the efficacy of the program on Science curriculum in two models, one in which teachers participate in professional development activities (the intervention), and another in which teachers receive the curriculum and teachers' guide but no professional development (the control).

Project Email: 
Award Number: 
1119327
Funding Period: 
Mon, 08/15/2011 to Mon, 07/31/2017
Project Evaluator: 
Brian Dates, Southwest Counseling Services
Full Description: 

The research goal of this project is to evaluate whether an early childhood science education program, Head Start on Science, implemented in low-income preschool settings (Head Start) produces measurable impacts for children, teachers, and parents. The study is being conducted in eight Head Start programs in Michigan, involving 72 classrooms, 144 teachers, and 576 students and their parents. Partners include Michigan State University, Grand Valley State University, and the 8 Head Start programs. Southwest Counseling Solutions is the external evaluator.

The study is determining the efficacy of the Head Start on Science curriculum in two models, one in which 72 teachers participate in professional development activities (the intervention), and another in which 72 teachers receive the curriculum and teachers' guide but no professional development (the control). The teacher study is a multi-site cluster randomized trial (MSCRT) with the classroom being the unit of randomization. Four time points over two years permit analysis through multilevel latent growth curve models. For teachers, measurement instruments include Attitudes Toward Science (ATS survey), the Head Start on Science Observation Protocol, the Preschool Classroom Science Materials/Equipment Checklist, the Preschool Science Classroom Activities Checklist, and the Classroom Assessment Scoring System (CLASS). For students, measures include the "mouse house problem," Knowledge of Biological Properties, the physics of falling objects, the Peabody Picture Vocabulary Test-Fourth Edition, the Expressive Vocabulary Test-2, the Test of Early Mathematics Ability-3, Social Skills Improvement System-Rating Scales, and the Emotion Regulation Checklist. Measures for parents include the Attitudes Toward Science survey, and the Community and Home Activities Related to Science and Technology for Preschool Children (CHARTS/PS). There are Spanish versions of many of these instruments which can be used as needed. The external evaluation is monitoring the project progress toward its objectives and the processes of the research study.

This project meets a critical need for early childhood science education. Research has shown that very young children can achieve significant learning in science. The curriculum Head Start on Science has been carefully designed for 3-5 year old children and is one of only a few science programs for this audience with a national reach. This study intends to provide a sound basis for early childhood science education by demonstrating the efficacy of this important curriculum in the context of a professional development model for teachers.

An Examination of Science and Technology Teachers' Conceptual Learning Through Concept-Based Engineering Professional Development

This project will determine the viability of an engineering concept-based approach to teacher professional development for secondary school science teachers in life science and in physical science. The project refines the conceptual base for engineering at the secondary level learning to increase the understanding of engineering concepts by the science teachers. The hypothesis is that when teachers and students engage with engineering design activities their understanding of science concepts and inquiry are also enhanced.

Project Email: 
Award Number: 
1158615
Funding Period: 
Thu, 09/01/2011 to Mon, 10/31/2011
Project Evaluator: 
Karen Peterman
Full Description: 

Technology educators from Black Hills State University and Purdue University partner with science educators from the University of Massachusetts at Boston and Stevens Institute of Technology to determine the viability of an engineering concept-based approach to teacher professional development for secondary school science teachers in life science and in physical science. The project refines the conceptual base for engineering at the secondary level learning (previously developed by the PIs) to increase the understanding of engineering concepts by the science teachers. In a pilot test of two weeks of professional development with ten teachers from each discipline, teachers become familiar with engineering concepts and study the process of infusing engineering concepts into science curricula so that they can develop modules in their discipline to be taught during the following in the school year. The following summer the teachers debrief the process and develop additional modules for their discipline. The process is revised and repeated with 22 teachers from each discipline. Teachers are explicitly provided strategies to help them meet the needs of diverse learners. The outputs of this project include: 1) a preliminary framework for secondary level engineering education to be published in both research and practitioner journals; 2) a pilot tested and validated Engineering Concept Assessment; 3) engineering-infused curriculum modules in life and physical science; and 4) a professional development model to prepare science teachers to infuse engineering in their teaching.

The project compares student learning when particular concepts in physics and biology are taught through engineering design with learning the same concepts taught an earlier group of students with present reform techniques used in the discipline. The hypothesis is that when teachers and students engage with engineering design activities their understanding of science concepts and inquiry are also enhanced. The research component of the project employs an iterative design with the design of activities followed by development and implementation. An engineering concept assessment is developed and tested to examine teacher learning and to determine how engineering concepts can be infused into the science curricula for life and physical science. Other quantitative and qualitative instruments are developed to assess the teachers? understandings of the engineering concepts and their pedagogical implications.

There is increasing emphasis on integrative STEM education. New national and international assessments are developing engineering strands and emphasizing non-routine problem solving. The framework for the Next Generation Science Standards includes engineering as one of four strands. Stand alone engineering course are not likely to be widely used. This project develops engineering infused science units and determines the professional development needed to use them effectively.

Project ATOMS: Accomplished Elementary Teachers of Mathematics and Science

The project is studying the impact of the mathematics and science intensive pre-service preparation program for elementary school teachers.  The project includes assessments of pre-service teachers' math and science content, teacher performance, self-report surveys, and teacher interviews. Each of the study dimensions (Knowledge Dimension, Teaching Performance, and Perspectives on the Program) will be assessed at three time points across this longitudinal study, providing a model for elementary teacher development of STEM teaching.

Partner Organization(s): 
Award Number: 
1118894
Funding Period: 
Thu, 09/01/2011 to Sat, 08/31/2019
Full Description: 

The project is studying the impact of the mathematics and science intensive pre-service preparation program for elementary school teachers at North Carolina State University called the Accomplished Elementary Teachers of Mathematics and Science (ATOMS). Faculty in NCSU's Department of Elementary Education, researchers at the Duke University Sanford School of Public Policy's Education Research Data Center and the NC State College Professional Education Office are involved in conducting this project.

The project includes assessments of pre-service teachers' math and science content, teacher performance, self-report surveys, and teacher interviews. Researchers are also tracking participants' perspectives on the program and comparing knowledge dimensions and teaching performance of a sub-sample of ATOMS teachers to a similar group of non-ATOMS teachers. Each of the study dimensions (Knowledge Dimension, Teaching Performance, and Perspectives on the Program) will be assessed at three time points across this longitudinal study, providing a model for elementary teacher development of STEM teaching.

The study has potential to advance current understanding regarding teacher preparation, especially in terms of supporting elementary teachers' instruction in science and math. The project is also innovative and potentially transformative by asking interesting and pertinent questions of how teachers can affect the learning of their students. Besides generating new knowledge, this project also has the potential to impact STEM education research. The ATOMS pre-service teacher preparation program may serve as a model for effective pre-service teacher education across the nation if the researchers can clearly demonstrate the effect of participating in the program in changing teachers' knowledge, attitudes, and skills, as well as their students' achievement. Investigators propose the dissemination of findings to both K-12 audiences and institutions of higher education. Additionally, key findings will be bulleted for policy makers in brief reports or brochures sent to deans of Colleges of Education nationwide, highlighting recommendations based on the findings.

Computer-Supported Math Discourse Among Teachers and Students (Collaborative Research: Powell)

This project will design, develop, and test an online collaborative learning environment where students and teachers solve mathematical problems and communicate their thinking.  This online collaborative learning environment will help increase the quality and quantity of math discourse among mathematics teachers and students.  The researchers will also examine the impact of the online collaborative learning environment on students' significant mathematical discourse and achievement.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1118888
Funding Period: 
Thu, 09/01/2011 to Fri, 08/31/2018
Full Description: 

This full research and development project is to design, develop, and test a cutting-edge learning environment where students and teachers solve mathematical problems and communicate their thinking with others through the virtual environment. The major focus is to increase the quality and quantity of significant math discourse among mathematics teachers and their students by using the virtual learning environment. The researchers will test the usability of the learning environment for engaging students in high quality discourse. The researchers will also examine the impact of the virtual learning environment on student significant mathematical discourse and achievement.

The project uses a design research method as well as summative evaluations to achieve research and development goals. Mixed methods will be used to examine the impact of the virtual learning environment on student significant mathematical discourse and achievement.

The findings of the project contribute to the field in three ways: (1) The virtual learning environment can be both an effective pedagogical tool and a research tool in mathematics education; (2) It will contribute to our understanding about the nature of mathematical discourse online as well as about ways to foster the quality and quantity of significant math discourse among teachers and their students; and (3) This project can provide insights into effective online deliveries of courses.

An Innovative Approach to Earth Science Teacher Preparation: Uniting Science, Informal Science Education, and Schools to Raise Student Achievement

The American Museum of Natural History in New York City, in partnership with New York University, and in collaboration with five high-needs schools, is developing, implementing, and researching a five-year pilot Master of Arts in Teaching (MAT) program in Earth Science. The program is delivered by the Museum's scientific and education teams and its evaluation covers aspects of the program from recruitment to first year of teaching.

Project Email: 
Award Number: 
1119444
Funding Period: 
Thu, 09/01/2011 to Thu, 08/31/2017
Project Evaluator: 
David Silvernail, Center for Education and Policy, University of Southern Maine
Full Description: 

The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”

Pages

Subscribe to Pedagogical Content Knowledge