Student Outcomes

Investigating School District Resilience and the Impact of Hurricane Exposure on Student Outcomes

This Rapid Response Research (RAPID) project is an exploratory mixed methods study investigating the impact of vulnerability and resilience in the recovery of North Carolina schools affected by both Hurricanes Florence (2018) and Matthew (2016). Specifically, the study assesses whether schools that were impacted by both storms used organizational learning strategies to recover faster than schools that were impacted by either Hurricane Florence or Matthew alone.

Project Email: 
Award Number: 
1904156
Funding Period: 
Tue, 01/01/2019 to Tue, 12/31/2019
Project Evaluator: 
Full Description: 

North Carolina has experienced 11 major disasters due to hurricanes or tropical storms over the past 20 years. Moreover, one tropical cyclone has hit the state every two years since 1851. Although natural disasters are frequent, efforts to understand and support public schools' responses to such disasters are rare. This Rapid Response Research (RAPID) project is an exploratory mixed methods study investigating the impact of vulnerability and resilience in the recovery of North Carolina schools affected by both Hurricanes Florence (2018) and Matthew (2016). Specifically, the study assesses whether schools that were impacted by both storms used organizational learning strategies to recover faster than schools that were impacted by either Hurricane Florence or Matthew alone. The project pursues three research questions: (1) What characteristics predict school district resilience? (2) How does prior disaster experience aid/hinder a resilient recovery? (3) Do students in resilient districts show less learning loss or rebound from learning loss more quickly?

This mixed methods project will involve interviews, focus groups and surveys with school and district personnel in a purposive sample of 15 districts across North Carolina that were heavily impacted by both storms and those that were affected by only one. These qualitative data will be used to derive markers of resilience that will then be used in quantitative analyses. Quantitative comparisons of state-wide data on student outcomes (e.g., achievement, attendance) will also be made across three kinds of districts: those that were affected by both storms, those that were affected by only one storm and those that were not affected at all. Quantitative data will be taken from an existing longitudinal database that includes individual student characteristics, attendance, suspensions and academic performance for all students in North Carolina. The purposive sampling of 15 districts in North Carolina allows for a novel comparison of impact, recovery and organizational learning across two disasters and over time. Disasters can create an opportunity for organizational change leading to greater resiliency in future crises; however, little extant research has focused on whether and how schools recover and remain resilient in the aftermath of natural disasters, such as hurricanes. This project can benefit schools in crisis by providing lessons learned and a roadmap for action to schools that are singularly and repeatedly impacted by natural disasters.

Alternative video text
Alternative video text: 

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Linnenbrink-Garcia)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Lead Organization(s): 
Award Number: 
1813047
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Marchand)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Award Number: 
1812976
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

Teacher Professional Learning to Support Student Motivational Competencies During Science Instruction (Collaborative Research: Harris)

This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction.

Lead Organization(s): 
Award Number: 
1907480
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Science teachers identify fostering student motivation to learn as a pressing need, yet teacher professional learning programs rarely devote time to helping teachers understand and apply motivational principles in their instruction. This project will bring together a multi-disciplinary team of researchers and science teachers to identify a set of practices that science teachers can readily incorporate into their planning and instruction. The project will design, develop, and test a research-based professional learning approach to help middle school science teachers effectively support and sustain student motivational competencies during science instruction. The approach will include use of materials addressing student motivational processes and how to support them, evaluation tools to measure student motivational competencies, lesson planning tools, and instruments for teacher self-evaluation. The translation to practice will include recognition of student diversity and consider ways to facilitate context-specific integration of disciplinary and motivational knowledge in practice. The project will focus on middle school science classrooms because this period is an important motivational bridge between elementary and secondary science learning. This project will enhance understanding of teacher pedagogical content knowledge (PCK) in that it frames knowledge about supporting motivational competencies in science as PCK rather than general pedagogical knowledge.

This early stage design and development project will iteratively develop and study a model of teacher professional learning that will help middle school science teachers create, modify, and implement instruction that integrates support for students' motivational competencies with the science practices, crosscutting concepts, and disciplinary core ideas specified in science curriculum standards. A design-based research approach will be used to develop and test four resources teachers will use to explicitly include attention to student motivational competencies in their lesson planning efforts. The resources will include: 1) educational materials about students' motivational processes with concrete examples of how to support them; 2) easy-to-implement student evaluation tools for teachers to gauge students' motivational competencies; 3) planning tools to incorporate motivational practices into science lesson planning; and 4) instruments for teacher self-evaluation. A collaborative group of educational researchers will partner with science teachers from multiple school districts having diverse student populations to jointly develop the professional learning approach and resources. This project will contribute to systemic change by moving motivational processes from an implicit element of educating students, to an explicit and intentional set of strategies teachers can enact. Research questions will focus on how teachers respond to the newly developed professional learning model, and how students respond to instruction developed through implementing the model.

This project was previously funded under award #1813086.

Professional Development Supports for Teaching Bioinformatics through Mobile Learning

This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. The project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities.

Lead Organization(s): 
Award Number: 
1812738
Funding Period: 
Sat, 09/01/2018 to Mon, 02/28/2022
Full Description: 

Bioinformatics is an emerging area of research that develops new knowledge through computational analysis of vast biological and biomedical data. This project will investigate the professional development supports needed for teaching bioinformatics at the high school level. Building from a robust literature in professional development design research, project team will work with biology and mathematics teachers to co-design instructional modules to engage students with core bioinformatics concepts and computational literacies, by focusing on local community health issues supported through mobile learning activities. The overarching goal of the project is to help create an engage population of informatics-informed students who are capable of critically analyzing information and able to solve local problems related to their health and well-being.

The project team will use a design-based implementation research approach to identify the curricular and instructional supports needed to achieve the teaching and learning goals through iterative project revisions, employing mixed methods to evaluate teacher and student learning processes and outcomes. Teachers from local high needs schools will participate in a three-week summer workshop, where they will learn about state-of-the-art bioinformatics content, project-based pedagogies that promote computational literacy, and strategies integrate mobile technologies into instruction.  They will implement the instructional units during the year, and the summer workshop will be revised and delivered to an expanded cohort of teachers the following summer. The data collection and analysis conducted on teachers' enactment of these modules will reveal the professional development and implementation areas needed to support particular populations, specifically underrepresented groups in STEM, to engage with bioinformatics learning and take authentic action on local community issues.

Translating a Video-based Model of Teacher Professional Development to an Online Environment

This project will adapt an effective in-person teacher professional development model to an online approach. A defining feature of the Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development program is its use of videos of classroom instruction and examples of student work to promote teacher learning. Adapting the STeLLA program to an online learning model can reach a broader and more diverse audience, such as teachers working in rural school districts and underserved communities.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813127
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Improving the quality of teaching is essential to improving student outcomes. But what are the most effective ways to support teachers' professional development?  BSCS Science Learning and the University of Minnesota STEM Education Program Area explore this question by adapting an effective teacher professional development model -- that meets face-to-face in real-time -- to an online approach. A defining feature of the Science Teachers Learning from Lesson Analysis (STeLLA) Professional Development program is its use of videos of classroom instruction and examples of student work to promote teacher learning. Skilled facilitators guide teachers' analysis and discussion of other teachers' work; then, teachers begin to apply the analytical techniques they have learned to their own teaching. Adapting the STeLLA program to an online learning model is important because it can reach a broader and more diverse audience such as teachers working in rural school districts and underserved communities. To further promote the reach of STeLLA, the online version of STeLLA will engage and prepare teacher leaders to support their peers' engagement and understanding.

Guided by theories of situated cognition and cognitive apprenticeship this project focuses on two questions: How can the STeLLA professional development model be adapted to an online environment? and Does participation in the online model show meaningful teacher and student outcomes related to science teaching and learning? Challenges related to adaptation include understanding the duration and intensity of teacher engagement, the quality of their science content learning experiences, and how teacher learning is scaffolded across the online and traditional model. The project will unfold in two phases. Phase 1 uses a design-based research approach to rapidly enact, test, and revise online program components while remaining true to the design principles underlying the traditional STeLLA PD program. Phase 2 uses a quasi-experimental approach to test STeLLA Online's influence on teacher content knowledge, pedagogical content knowledge, practice and on upper elementary student science achievement. Comparisons will be made between STeLLA Online, face-to-face STeLLA, and a traditional professional development program that emphasizes deepening content knowledge only. This comparison leverages data from a previously-completed cluster randomized trial of STeLLA funded by the NSF.

Supporting Teachers in Responsive Instruction for Developing Expertise in Science (Collaborative Research: Linn)

This project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. Students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses.

Partner Organization(s): 
Award Number: 
1813713
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

Many teachers want to adapt their instruction to meet student learning needs, yet lack the time to regularly assess and analyze students' developing understandings. The Supporting Teachers in Responsive Instruction for Developing Expertise in Science (STRIDES) project takes advantage of advanced technologies to support science teachers to rapidly respond to diverse student ideas in their classrooms. In this project students will use web-based curriculum units to engage with models, simulations, and virtual experiments to write multiple explanations for standards-based science topics. Advanced technologies (including natural language processing) will be used to assess students' written responses and summaries their science understanding in real-time. The project will also design planning tools for teachers that will make suggestions relevant research-proven instructional strategies based on the real-time analysis of student responses. Research will examine how teachers make use of the feedback and suggestions to customize their instruction. Further we will study how these instructional changes help students develop coherent understanding of complex science topics and ability to make sense of models and graphs. The findings will be used to refine the tools that analyze the student essays and generate the summaries; improve the research-based instructional suggestions in the planning tool; and strengthen the online interface for teachers. The tools will be incorporated into open-source, freely available online curriculum units. STRIDES will directly benefit up to 30 teachers and 24,000 students from diverse school settings over four years.

Leveraging advances in natural language processing methods, the project will analyze student written explanations to provide fine-grained summaries to teachers about strengths and weaknesses in student work. Based on the linguistic analysis and logs of student navigation, the project will then provide instructional customizations based on learning science research, and study how teachers use them to improve student progress. Researchers will annually conduct at least 10 design or comparison studies, each involving up to 6 teachers and 300-600 students per year. Insights from this research will be captured in automated scoring algorithms, empirically tested and refined customization activities, and data logging techniques that can be used by other research and curriculum design programs to enable teacher customization.

Building Middle School Students' Understanding of Heredity and Evolution

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules.

Lead Organization(s): 
Award Number: 
1814194
Funding Period: 
Sat, 09/01/2018 to Wed, 08/31/2022
Full Description: 

This project will develop and test the impact of heredity and evolution curriculum units for middle school grades that are aligned with the Next Generation Science Standards (NGSS). The project will advance science teaching by investigating the ways in which two curriculum units can be designed to incorporate science and engineering practices, cross-cutting concepts, and disciplinary core ideas, the three dimensions of science learning described by the NGSS. The project will also develop resources to support teachers in implementation of the new modules. The planned research will also examine whether student understanding of evolution depends on the length and time of exposure to learning about heredity prior to learning about evolution.

This Early Stage Design and Development project will develop two new 3-week middle school curriculum units, with one focusing on heredity and the other focusing on evolution. The units will include embedded formative and summative assessment measures and online teacher support materials. These units will be developed as part of a curriculum learning progression that will eventually span the elementary grades through high school. This curriculum learning progression will integrate heredity, evolution, data analysis, construction of scientific explanations, evidence-based argumentation, pattern recognition, and inferring cause and effect relationships. To inform development and iterative revisions of the units, the project will conduct nation-wide beta and pilot tests, selecting schools with broad ranges of student demographics and geographical locations. The project will include three rounds of testing and revision of both the student curriculum and teacher materials. The project will also investigate student understanding of evolution in terms of how their understanding is impacted by conceptual understanding of heredity. The research to be conducted by this project is organized around three broad research questions: (a) In what ways can two curriculum units be designed to incorporate the three dimensions of science learning and educative teacher supports to guide students' conceptual understanding of heredity and evolution? (b) To what extent does student understanding of evolution depend on the length and timing of heredity lessons that preceded an evolution unit? And (c) In what ways do students learn heredity and evolution?

LabVenture - Revealing Systemic Impacts of a 12-Year Statewide Science Field Trip Program

This project will examine the impact of a 12-year statewide science field trip program called LabVenture, a hands-on program in discovery and inquiry that brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) to become fully immersed in explorations into the complexities of local marine science ecosystems.

Award Number: 
1811452
Funding Period: 
Sat, 09/01/2018 to Thu, 08/31/2023
Full Description: 

This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the state of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

Advancing Methods and Synthesizing Research in STEM Education

This project will address two critical opportunities to improve the translation and connection of innovations and evidence across federally funded STEM education projects. First, the project will aim to build capacity and learning opportunities for STEM education research and development. Second, the project will synthesize evidence of discovery and innovation across NSF-funded work.

Award Number: 
1813777
Funding Period: 
Sat, 09/01/2018 to Tue, 08/31/2021
Full Description: 

Rigorous research and development methods are essential for developing and testing new approaches in STEM education. This project will address two critical opportunities to improve the translation and connection of innovations and evidence across federally funded STEM education projects. First, the project will aim to build capacity and learning opportunities for STEM education research and development. Second, the project will synthesize evidence of discovery and innovation across NSF-funded work.

This project will conduct four research syntheses. Final topics will be determined but may include early math education, early learning in science, and engineering in the elementary grades. As part of this work, the team will produce a brief report for each topical synthesis, designed to highlight and elevate evidence and contributions across a set of projects, in a nontechnical format that combines graphics with text. Content will include a rationale for the topic and its importance in STEM education; synopsis of the investments in this area and the projects sampled; synopsis of the cross-project contributions, with illustrative highlights or examples from projects; commentary on the quality of evidence; and discussion of the contributions and potential broader impacts of the investments. The project will also plan and conduct a series of methods-focused webinars which may include topics such as rigorous quasi-experimental designs; measuring implementation fidelity and adaptation; applying improvement science methods; cluster randomized controlled trials; design-based research; or developing and testing valid measures. The materials from the webinars will be procured and made publicly available for the education research community.

Pages

Subscribe to Student Outcomes