Student Outcomes

Designing for Science Learning in Schools by Leveraging Participation and the Power of Place through Community and Citizen Science (Collaborative Research: Ballard)

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

Partner Organization(s): 
Award Number: 
1908915
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers. Students will investigate locally-relevant phenomena related to forest health, such as fire management and invasive species. The students will collect and analyze data related to resource management issues and share findings with community scientists and stakeholders. The project will develop and test a reproducible and adaptable place-based instructional model for schools, districts, and counties having underserved rural populations.

This early stage design and development project for students and teachers of grades 3-5 addresses two major goals: 1) Design and implement a science education program focused on local forest management issues to promote community-relevant learning and agency, and 2) Conduct design-based research to identify effective approaches to engaging young students in purposeful data collection and interpretation, and informed interaction with local stakeholders. The study includes 15 comprehensive public schools and charter schools in 12 school districts in a rural region having limited access to the formal and informal science learning opportunities typically available in urban centers. Research activities are guided by two research questions: 1) To what extent and in what ways do students participating in a school-based, community-engaged, place-based, environmental-focused program develop environmental science agency? And 2) Which design variations of the three Central Design Features foster the three science learning outcomes for students? The three Central Design Features are: 1) Collecting place-relevant environmental data, 2) Facilitated meaning-making with collected data embedded within larger data sets, and 3) Community-engaged, place-based projects and interactions. A design-based research approach will be used to determine how the planned design variations impact learning. The project will involve three design cycles of two-years each, with adjustments being based on insights gained during each implementation cycle. Pre- and post-program sureveys will be used to track changes in student environmental science agency (ESA), and field observations, semi-structured interviews with students and teachers, and examination of student work and artifacts will be used to gather data used to answer the research questions.

Designing for Science Learning in Schools by Leveraging Participation and the Power of Place through Community and Citizen Science (Collaborative Research: Henson)

This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers.

Lead Organization(s): 
Award Number: 
1908670
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by developing and testing a place-based environmental science research and monitoring program for elementary school students and their teachers. Students will investigate locally-relevant phenomena related to forest health, such as fire management and invasive species. The students will collect and analyze data related to resource management issues and share findings with community scientists and stakeholders. The project will develop and test a reproducible and adaptable place-based instructional model for schools, districts, and counties having underserved rural populations.

This early stage design and development project for students and teachers of grades 3-5 addresses two major goals: 1) Design and implement a science education program focused on local forest management issues to promote community-relevant learning and agency, and 2) Conduct design-based research to identify effective approaches to engaging young students in purposeful data collection and interpretation, and informed interaction with local stakeholders. The study includes 15 comprehensive public schools and charter schools in 12 school districts in a rural region having limited access to the formal and informal science learning opportunities typically available in urban centers. Research activities are guided by two research questions: 1) To what extent and in what ways do students participating in a school-based, community-engaged, place-based, environmental-focused program develop environmental science agency? And 2) Which design variations of the three Central Design Features foster the three science learning outcomes for students? The three Central Design Features are: 1) Collecting place-relevant environmental data, 2) Facilitated meaning-making with collected data embedded within larger data sets, and 3) Community-engaged, place-based projects and interactions. A design-based research approach will be used to determine how the planned design variations impact learning. The project will involve three design cycles of two-years each, with adjustments being based on insights gained during each implementation cycle. Pre- and post-program sureveys will be used to track changes in student environmental science agency (ESA), and field observations, semi-structured interviews with students and teachers, and examination of student work and artifacts will be used to gather data used to answer the research questions.

Science Coordinators Advancing a Framework for Outstanding Leadership Development

This project will develop and test a professional development program designed for school district science coordinators by examining impacts of participating coordinators on science teachers and their students.

Lead Organization(s): 
Award Number: 
1908431
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Full Description: 

Current priorities in formal science education include building strong professional learning communities that foster ongoing professional growth among teachers, teacher leaders, and school administrators. This project responds to these priorities by developing and testing a professional development program designed for school district science coordinators. Though these science coordinators typically have some degree of responsibility for supporting science teachers in their school districts, most individuals appointed to these leadership positions have little or no formal preparation for the role. The range of duties assigned to science coordinators varies greatly from district to district, but duties typically include mentoring teachers, selecting curriculum materials, overseeing science supplies and classroom safety, and advocating for science program improvements. The professional development model being designed and developed by this project will be tested by examining impacts of participating science coordinators on science teachers and their students.

The goal of this four-year exploratory study is to determine if a specialized professional development program for district science coordinators can facilitate their growth as instructional leaders and the instructional practices of science teachers of their school districts. More specifically, the project will pursue answers to two research questions: 1) How, if at all, does the professional development model impact the knowledge, practices, and work of the science coordinators? and 2) How, if at all, do participating science coordinators impact the practices of science teachers who are implementing the Next Generation Science Standards? A design-based research approach will be employed to develop a two-year professional development model having 80 hours of programming during the first year, and 30 hours during the second year. Programming will include a blend of face-to-face and online meetings and modules. The mixed-methods research plan will compare teaching and learning outcomes within three groups: 1) The treatment groups consisting of science coordinators who participated in the professional development program, and the science teachers with whom they work, 2) A comparison group of science coordinators who did not participate in the professional development program and the teachers with whom they work, and 3) A comparison group consisting of science teachers who do not have direct access to a science coordinator. Quantitative data will be gathered through use of instruments that measure how science coordinators develop their knowledge and practices, and how they modify their perspectives as leaders. Observations of the classroom practices of teachers will also be documented. The qualitative research component will include interviews, examination of artifacts, and focus groups.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Danish)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908632
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Generalized Embodied Modeling to Support Science through Technology Enhanced Play (Collaborative Research: Enyedy)

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1908791
Funding Period: 
Thu, 08/01/2019 to Sun, 07/31/2022
Full Description: 

The project will develop and research a new Mixed Reality environment (MR), called GEM-STEP, that leverages play and embodiment as resources for integrating computational modeling into the modeling cycle as part of science instruction for elementary students. GEM stands for Generalized Embodied Modeling. Through these embodied, play-as-modeling activities, students will learn the core concepts of science, and the conceptual skills of modeling and systematic measurement. MR environments use new sensing technologies to help transform young children's physical actions during pretend play into a set of symbolic representations and parameters in a science simulation. As students physically move around the classroom, the computer will track their motion and interactions with selected objects and translate their physical activity into a shared display. For example, students pretend they are water particles and work together to model different states of matter. The children see their activity projected onto a computer simulation where a model of a water particle is displayed over the video of themselves. As students collectively reflect upon the nature of a water molecule, they refine their understanding of water as ice, a liquid or a gas. The proposed innovation allows the students to program and revise their own mixed reality simulations as part of their modeling cycle. Embodied and computational modeling will help students to reflect on their models in a unique way that will make their models more computationally accurate and enhance their understanding of the underlying concepts.

The project will research how using the body as a component of the modeling cycle differs from and interacts with the articulation of a scientific model through more structured computational means. The project will investigate the benefits of combining embodiment with computational elements in GEM:STEP by studying the range of concepts that students can learn in this manner. Lessons will be developed to address different disciplinary core ideas, such as states of matter, pollination as a complex system, or decomposition, as well as cross-cutting concepts of systems thinking, and energy/matter flow, all of which link directly to upper elementary science curriculum. Project research will gather data to understand what kinds of models students develop, what learning processes are supported using GEM:STEP, and what learning results. The data will include: (1) documenting and analyzing what students modeled and how accurate the models are; (2) recording student activity using audio and voice to code their activity to document learning processes and to look at how different forms of modeling interact with one another to promote learning; and (3) pre-post content measures to assess learning. All of the software that is developed for GEM:STEP will be made available as Open Source projects, allowing other researchers to build upon and extend this work. The results of the research will be disseminated in academic conferences and peer reviewed journals. The motion tracking software is already available on Github, a popular open-source repository. Once developed, the aim is to implement GEM:STEP in a wide range of classroom contexts, supported by a user-friendly interface, teacher guides, and professional development.

Supporting Students' Science Content Knowledge through Project-based Inquiry

This project will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities.

Award Number: 
1907895
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Full Description: 

The Project-Based Inquiry (PBI) Global initiative will address STEM learning through classroom implementation at two project partner schools in North Carolina, one urban and the other rural, with culturally diverse student populations. Both are innovative public high schools implementing the Early College High School model, preparing diverse students from populations underrepresented in STEM fields for college success. Because of the synergistic interaction of theory and practice, the project will produce substantial advances in the development of improved inquiry-based learning materials and research on the impact of these materials on students and teachers. The project offers high school students the opportunity to be immersed in science content through engaging in globally-relevant learner-centered activities. The following three research questions will be addressed: 1) How does inquiry through the PBI Global process support student science content knowledge? 2) How can students' motivation and engagement be characterized after participating in the PBI Global process? 3) To what degree do teachers' attitudes toward inquiry-based pedagogies change as a result of PBI Global professional development?

Project-Based Inquiry (PBI) Global responds to the need for research-informed and field-tested products with iterative development and implementation of a globally relevant, inquiry-based STEM curriculum. The project focuses on developing 9th grade student physical, biological, and environmental science content knowledge and science and engineering practices through the topics of global water and sanitation issues. Factors influencing student motivation and engagement, as well as teacher attitudes toward inquiry-based pedagogies will be investigated. The project will use a Design-Based Research (DBR) approach to develop and refine instructional materials and teacher professional development for the existing interdisciplinary PBI Global initiative. A mixed-methods research convergent parallel design will be used to explore the effects of the classroom implementation on student and teacher outcomes.


Project Videos

2020 STEM for All Video Showcase

Title: Project-Based Inquiry (PBI) Global 2020

Presenter(s): Hiller Spires & Erin Krupa


Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists (Collaborative Research: Lewis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906588
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists Collaborative Research: Davis)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906565
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Developing Leaders, Transforming Practice in K-5 Mathematics: An Examination of Models for Elementary Mathematics Specialists Collaborative Research: Rigelman)

This project will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to develop teacher leaders, improve teachers' instructional practices, and increase student mathematics understanding and achievement.

Lead Organization(s): 
Award Number: 
1906682
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Project Evaluator: 
RMC Research
Full Description: 

Minimal rigorous research has been conducted on the effect of various supports for quality mathematics instruction and providing guidance on the development and use of Elementary Mathematics Specialists (EMSs) on student achievement. Portland Public Schools (PPS), Portland State University, and RMC Research Corporation will study the Developing Leaders Transforming Practice (DLTP) intervention, which aims to improve teachers' instructional practices, increase student mathematics understanding and achievement. The project team will evaluate the efficacy and use of EMSs by testing four implementation models that consider the various ways EMSs are integrated into schools. DLTP builds on EMS research, investigating EMSs both as elementary mathematics teachers and coaches by articulating four models and examining their efficacy for both student and teacher learning. This study has the potential to provide benefits both within and beyond PPS as it informs the preparation and use of EMSs. Determining which model is best in certain contexts provides a focus for the expansion of mathematics support.

DLTP enhances the research base by examining the effect of teacher PD on student achievement through a rigorous quasi-experimental design. The project goals will be met by addressing 4 research questions: 1) What is the effect of the intervention on teacher leadership?; 2) What is the effect of the intervention on teachers' use of research-based instructional practices?; 3) What is the effect of the intervention on a school's ability to sustain ongoing professional learning for teachers?; and 4) What is the effect of the intervention on student mathematics achievement? Twelve elementary schools in PPS will select elementary teachers to participate in the DLTP and adopt an implementation model that ranges from direct to diffuse engagement with students: elementary mathematics teacher, grade level coach, grade-level and building-level coach, or building-level coach. The research team will conduct 4 major studies that include rigorous quasi-experimental designs and a multi-method approach to address the research questions: leadership study, instructional practices study, school study, and student achievement study. Several tools will be created by the project - a leadership rubric designed to measure changes in EMS mathematics leadership because of the project and a 5-part teacher survey designed capture EMS leadership skills, pedagogical content knowledge, use of research-based practices, and school climate for mathematics learning as well as implementation issues.

Validation of the Equity and Access Rubrics for Mathematics Instruction (VEAR-MI)

The main goal of this project is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. The project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

Award Number: 
1908481
Funding Period: 
Mon, 07/15/2019 to Fri, 06/30/2023
Full Description: 

High-quality mathematics instruction remains uncommon and opportunities for students to develop the mathematical understanding are not distributed equally. This is particularly true for students of color and students for whom English is not their first language. While educational research has made progress in identifying practices that are considered high-quality, little attention has been given to specific instructional practices that support historically marginalized groups of students particularly as they participate in more rigorous mathematics. The main goal is to validate a set of rubrics that attend to the existence and the quality of instructional practices that support equity and access in mathematics classes. In addition, the project team will clarify the relationships between the practices outlined in the rubrics and aspects of teachers' perspectives and knowledge as well as student learning outcomes.

This project will make use of two existing large-scale datasets focusing on mathematics teachers to develop rubrics on mathematics instructional quality. The datasets include nearly 3,000 video-recorded mathematics lessons and student achievement records from students in Grades 3 through 8. The four phases of this research and development project include training material development, an observation and rubric generalizability study, a coder reliability study, and structural analysis. Data analysis plans involve case studies, exploratory and confirmatory factor analyses, and cognitive interviews. 

Pages

Subscribe to Student Outcomes