Broadening Participation

Differentiated Professional Development: Building Mathematics Knowledge for Teaching Struggling Learners

This project is creating and studying a blended professional development model (face-to-face and online) for mathematics teachers and special educators (grades 4-7) with an emphasis on teaching struggling math students in the areas of fractions, decimals, and positive/negative numbers (Common Core State Standards). The model's innovative design differentiates professional learning to address teachers' wide range of prior knowledge, experiences, and interests.

Award Number: 
1020163
Funding Period: 
Wed, 09/01/2010 to Wed, 08/31/2011
Project Evaluator: 
Teresa Duncan
Full Description: 

This project under the direction of the Education Development Center is creating and studying a  professional development model for middle school mathematics teachers with an emphasis on teaching struggling math students in the areas of fractions and rational numbers. There are three components to the PD for teachers: online modules, professional learning communities, and face-to-face workshops. There are four online modules 1) Fraction sense: concepts, addition, and subtraction, 2) Fraction multiplication and division; 3) Decimal and percent operations; and 4) Positive/Negative including concepts and operations. Each module is one week long. There are common sessions and special emphasis ones depending on the needs of the teacher. The project addresses three research questions: 1) To what extent do participating teachers show changes in their knowledge of rational numbers and integers, pedagogical knowledge of and beliefs about instructional practices for struggling students and abilities to use diagnostic approaches to identify and address student difficulties?; 2) To what extent do students of participating teachers increase their mathematical understanding and skill?; and 3) To what extent do students of participating teachers show positive changes in their attitudes toward learning mathematics?

In the first year of work on the professional development program, fifty-five teachers will test the initial components of the differentiated modules. In years two and three an additional 160 teachers will participate in the professional development and research to test efficacy of the professional development model. In addition to this testing, twelve teachers will be selected for intensive case studies. Teacher content knowledge, pedagogical content knowledge, and attitudes will be assessed by various well-validated instruments, and changes in their classroom practice will be assessed by classroom observations. Effects of the teacher professional development on student learning will be evaluated by analysis of data from state assessments and by performance on selected items from NAEP and other standardized tests.

This project will result in a tested innovative model for professional development of mathematics teachers to help them with the critical challenge of assisting students who struggle in learning the core concepts and skills of rational numbers and integers. Deliverables will include the on-line modules, materials for workshop and professional learning community work, new research instruments, and research reports.

Using PISA to Develop Activities for Teacher Education (UPDATE)

This project uses items and data from the Program for International Student Assessment (PISA) to develop two kinds of resources for preparation and professional development of secondary mathematics teachers: one in the form of prototype professional learning materials and a second in the form of PISA-based, research-grounded articles written for mathematics teachers and teacher educators. Work on both resources will focus on algebra and quantitative literacy and on factors influencing educational equity.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1019513
Funding Period: 
Wed, 09/01/2010 to Fri, 08/31/2012
Full Description: 

The UPDATE project seeks to enable significant advances in K-12 teacher and student learning of mathematics by using of items and data from the Program for International Student Assessment (PISA) in ways that enhance the work of mathematics teachers and teacher educators. We hypothesize that PISA can be useful to the field in much the same way as the National Assessment of Educational Progress (NAEP), which has long served as a key source of information for the mathematics education community. In contrast to NAEP and TIMSS, the Program for International Student Assessment (PISA) in the area of mathematics has received little or no attention within the U.S. mathematics education community, beyond noting that the performance of U.S. students is mediocre compared to that of students in many other countries in Asia and Europe. A consequence of the lack of attention to PISA in the U.S. is that we have underutilized a potentially valuable source of information for improvement of mathematics education.

In this project we use PISA as a base to develop resources for mathematics educators to use in teacher education settings. One type of resource comes in the form of prototype professional learning materials that provide opportunities for teachers and students to analyze complex mathematical tasks and student responses to those tasks, focusing on both the mathematics entailed in the task and the understandings of mathematics reflected in students’ responses. The materials will be designed to engage teachers in individual and collaborative inquiry aimed at developing their specialized content knowledge and their pedagogical content knowledge. Materials will be field tested in preservice and inservice teacher professional education settings and also shared at regional and national meetings. A second type of resource comes in the form of PISA-based, research-grounded articles written specifically for mathematics teachers and teacher educators and published in journals that reach these audiences. The articles will be informed not only by our experiences in developing and using the prototype materials, but also by the findings of selected secondary analyses of data collected in the 2003 PISA assessment.

Our work is organized around three distinct focus areas: (1) Algebra – a traditional content topic familiar to mathematics teachers that can be approached in a novel way through PISA tasks; (2) Quantitative Literacy – a nontraditional content topic less familiar to mathematics teachers that can be accessed directly through PISA tasks, and (3) Equity – an issue of import to mathematics educators that can be examined carefully using PISA data. In each component our work blends research inquiry and development, integrating the analysis of tasks and data from the PISA mathematics assessment with the creation of prototype teacher education materials and the preparation of PISA-based, research-grounded articles for teachers and teacher educators.

The results of this exploratory study will be disseminated broadly, and they are likely to generate new activity in research and development related to PISA. Mirroring the tradition of the interpretive reports of NAEP results, we will produce PISA-based resources that can have a significant impact on the mathematics education community as teachers, teacher educators, and graduate students examine the materials and reports we produce and use them to improve the quality of teacher and student learning of mathematics.

This exploratory project led by faculty from the University of Michigan uses items and data from the Program for International Student Assessment (PISA) to develop two kinds of resources for preparation and professional development of secondary mathematics teachers. One type of resource comes in the form of prototype professional learning materials that provide opportunities for teachers and students to analyze complex mathematical tasks and student responses to those tasks, focusing on both the mathematics entailed in the task and the understandings of mathematics reflected in students' responses. A second type of resource comes in the form of PISA-based, research-grounded articles written specifically for mathematics teachers and teacher educators. Work on both resources will focus on the critical content areas of algebra and quantitative literacy and on factors influencing educational equity.

The project is driven by the hypothesis that PISA assessment instruments and findings can be useful to teachers in much the way that prior analyses of NAEP frameworks, items, and data have been. To address the first project objective, the research team will use selected PISA items and student responses to those items to design, develop, and test a collection of professional learning tasks that engage mathematics teachers in individual and collaborative inquiry aimed at enhancing their specialized content knowledge and their pedagogical content knowledge. To address the second project objective, the research team will prepare articles for practitioner journals that will be informed by experiences in developing and using the prototype materials, but also by the findings of selected secondary analyses of data collected in the 2003 PISA assessment.

The results of this work will be a collection of resources for use in various teacher preparation and professional development settings to stimulate thinking of secondary mathematics teachers about issues of curriculum content, student learning, teaching, and assessment.

INK-12: Teaching and Learning Using Interactive Ink Inscriptions in K-12 (Collaborative Research: Koile)

This is a continuing research project that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The primary products are substantiated research findings on the use of tablet computers and inscriptions in 4th and 5th grade math and science, as well as models for teacher education and use.
Award Number: 
1020152
Funding Period: 
Wed, 09/01/2010 to Sun, 08/31/2014
Project Evaluator: 
David Reider, Education Design Inc.
Full Description: 

The research project continues a collaboration between MIT's Center for Educational Computing Initiatives and TERC focusing on the enhancement of K-12 STEM math and science education by means of technology that supports (1) creation of what are termed "ink inscriptions"--handwritten sketches, graphs, maps, notes, etc. made on a computer using a pen-based interface, and (2) in-class communication of ink inscriptions via a set of connected wireless tablet computers. The project builds on the PIs' prior work, which demonstrated that both teachers and students benefit from such technology because they can easily draw and write on a tablet screens, thus using representations not possible with only a typical keyboard and mouse; and they can easily send such ink inscriptions to one another via wireless connectivity. This communication provides teachers the opportunity to view all the students' work and make decisions about which to share anonymously on a public classroom screen or on every student's screen in order to support discussion in a "conversation-based" classroom. Artificial intelligence methods are used to analyze ink inscriptions in order to facilitate selection and discussion of student work.

The project is a series of design experiments beginning with the software that emerged from earlier exploratory work. The PIs conduct two cycles of experiments to examine how tablets affect students learning in 4th and 5th grade mathematics and science. The project research questions and methods focus on systematic monitoring of teachers' and students' responses to the innovation in order to inform the development process. The PIs collect data on teachers' and students' use of the technology and on student learning outcomes and use those data as empirical evidence about the promise of the technology for improving STEM education in K-12 schools. An external evaluator uses parallel data collection, conducting many of the same research activities as the core team and independently providing analysis to be correlated with other data. His involvement is continuous and provides formative evaluation reports to the project through conferences, site visits, and conference calls.

The primary products are substantiated research findings on the use of tablet computers, inscriptions, and networks in 4th and 5 grade classrooms. In addition the PIs develop models for teacher education and use, and demonstrate the utility of artificial intelligence techniques in facilitating use of the technology. With the addition of Malden Public Schools to the list of participating districts, which includes Cambridge Public Schools and Waltham Public Schools from earlier work, the project expands the field test sites to up 20 schools' classrooms.

CAREER: Examining the Role of Context in the Mathematical Learning of Young Children

This project involves a longitudinal, ethnographic study of children's mathematical performances from preschool to first grade in both formal classroom settings and informal settings at school and home. The study seeks to identify opportunities for mathematical learning, to map varied performances of mathematical competence, to chart changes in mathematical performance over time, and to design and assess the impact of case studies for teacher education.

Award Number: 
1461468
Funding Period: 
Mon, 06/15/2009 to Tue, 05/31/2011
Full Description: 

This project involves a longitudinal, ethnographic study of children's mathematical performances from preschool to first grade in both formal classroom settings and informal settings at school and home. The proposed site for the study is a small, predominately African-American pk-12 school. The study seeks to identify opportunities for mathematical learning by young children across multiple contexts, to map varied performances of mathematical competence by young children, to chart changes in young children's mathematical performance over time, and to design and assess the impact of case studies for teacher education that explore young children's mathematical competencies. Research questions focus on mathematical opportunities for learning in various contexts, children's development of knowledge, skills, and dispositions over time, the characteristics of competent mathematical performances, and the role of case studies in helping beginning teachers to understand young minority children's mathematical thinking. Data collected will include video tapes of classroom activities, written fieldnotes of formal and informal settings, student work, parent focus group transcripts, and children's interview performances. Analysis will involve both thematic coding and construction of case studies. The overarching goal of this project is to transform the ways that researchers think about and study the mathematical learning of young minority children as well as the quality of schooling these children experience.

Nurturing Mathematics Dreamkeepers

This study targets elementary schools with a documented achievement gap between White American and African American students and investigates: (a) the ways K-2 teachers draw upon their current knowledge (mathematical, cultural, pedagogical) to make sense of African American students' conceptions; (b) how teachers might advance their practice through understanding of the relationship between students' cultural experiences and mathematical conceptions; and (c) to what extent this advancement brings forth solid foundations in mathematics among all students.

Partner Organization(s): 
Award Number: 
0353412
Funding Period: 
Wed, 09/01/2004 to Wed, 08/31/2011

Integrating Computing Across the Curriculum (ICAC): Incorporating Technology into STEM Education Using XO Laptops

This project builds and tests applications tied to the school curriculum that integrate the sciences with mathematics, computational thinking, reading and writing in elementary schools. The investigative core of the project is to determine how to best integrate computing across the curriculum in such a way as to support STEM learning and lead more urban children to STEM career paths.

Project Email: 
Award Number: 
1404467
Funding Period: 
Sat, 08/01/2009 to Sun, 07/31/2011
Project Evaluator: 
Leslie Cooksy - Univ. of Delaware
Full Description: 

Computer access has opened an exciting new dimension for STEM education; however, if computers in the classroom are to realize their full potential as a tool for advancing STEM education, methods must be developed to allow them to serve as a bridge across the STEM disciplines. The goal of this 60-month multi-method, multi-disciplinary ICAC project is to develop and test a program to increase the number of students in the STEM pipeline by providing teachers and students with curricular training and skills to enhance STEM education in elementary schools. ICAC will be implemented in an urban and predominantly African American school system, since these schools traditionally lag behind in filling the STEM pipeline. Specifically, ICAC will increase computer proficiency (e.g., general usage and programming), science, and mathematics skills of teachers and 4th and 5th grade students, and inform parents about the opportunities available in STEM-centered careers for their children.

The Specific Aims of ICAC are to:

SA1. Conduct a formative assessment with teachers to determine the optimal intervention to ensure productive school, principal, teacher, and student participation.

SA2. Implement a structured intervention aimed at (1) teachers, (2) students, and (3) families that will enhance the students’ understanding of STEM fundamentals by incorporating laptops into an inquiry-based educational process.

SA3. Assess the effects of ICAC on:

a. Student STEM  engagement and performance.

b. Teacher and student computing specific confidence and utilization.

c. Student interest in technology and STEM careers.

d. Parents’ attitudes toward STEM careers and use of computers.

To enable us to complete the specific aims noted above, we have conducted a variety of project activities in Years 1-3. These include:

  1. Classroom observations at the two Year 1 pilot schools
  2. Project scaling to 6 schools in Year 2 and 10 schools in Year 3
  3. Semi-structured school administrator interviews in schools
  4. Professional development sessions for teachers
  5. Drafting of curriculum modules to be used in summer teacher institutes and for dissemination
  6. In-class demonstration of curriculum modules
  7. Scratch festivals each May
  8. Summer teacher institutes
  9. Student summer camps
  10. Surveying of teachers in summer institutes
  11. Surveying of teachers and students at the beginning and end of the school year
  12. Showcase event at end of student workshops

The specific ICAC activities for Years 2-5 include:

  • Professional development sessions (twice monthly for teachers), to integrate the ‘best practices’ from the program.
  • Working groups led by a grade-specific lead teacher. The lead teacher for each grade in each school will identify areas where assistance is needed and will gather the grade-specific cohort of teachers at their school once every two weeks for a meeting to discuss the progress made in addition to challenges to or successes in curricula development.  
  • ICAC staff and prior trained teachers will visit each class monthly during the year to assist the teachers and to evaluate specific challenges and opportunities for the use of XOs in that classroom.  
  • In class sessions at least once per month (most likely more often given feedback from Teacher Summer Institutes) to demonstrate lesson plans and assist teachers as they implement lesson plans.
  • ICAC staff will also hold a joint meeting of administrators of all target schools each year to assess program progress and challenges. 
  • Teacher Summer Institutes – scaled-up to teachers from the new schools each summer to provide training in how to incorporate computing into their curriculum.
  • Administrator sessions during the Teacher Summer Institutes; designed to provide insight into how the laptops can facilitate the education and comprehension of their students in all areas of the curriculum, discuss flexible models for physical classroom organization to facilitate student learning, and discussions related to how to optimize the use of computing to enhance STEM curricula in their schools.  Student Summer Computing Camps – designed to teach students computing concepts, make computing fun, and enhance their interest in STEM careers.  
  • ICAC will sponsor a yearly showcase event in Years 2-5 that provides opportunities for parents to learn more about technology skills their children are learning (e.g., career options in STEM areas, overview of ICAC, and summary of student projects). At this event, a yearly citywide competition among students also will be held that is an expanded version of the weeklong showcase event during the student summer camps.
  • Surveying of students twice a year in intervention schools.
  • Surveying of teachers at Summer Institutes and then at the end of the academic year.
  • Coding and entry of survey data; coding of interview and observational data.
  • Data analysis to examine the specific aims (SA) noted above:
    • The impact of ICAC on teacher computing confidence and utilization (SA 3.b).
    • Assess the effects of (1) teacher XO training on student computing confidence and utilization (SA 3.b), (2) training on changes in interest in STEM careers (SA 3.c), and (3) XO training on student engagement (SA 3.a).
    • A quasi-experimental comparison of intervention and non-intervention schools to assess intervention effects on student achievement (SA 3.a).
    • Survey of parents attending the yearly ICAC showcase to assess effects on parental attitudes toward STEM careers and computing (SA 3.d).

The proposed research has the potential for broad impact by leveraging technology in BCS to influence over 8,000 students in the Birmingham area. By targeting 4th and 5th grade students, we expect to impact STEM engagement and preparedness of students before they move into a critical educational and career decision-making process. Further, by bolstering student computer and STEM knowledge, ICAC will impart highly marketable skills that prepare them for the 81% of new jobs that are projected to be in computing and engineering in coming years (as predicted by the US Bureau of Labor Statistics).3 Through its formative and summative assessment, ICAC will offer intellectual merit by providing teachers throughout the US with insights into how computers can be used to integrate the elementary STEM curriculum. ICAC will develop a model for using computers to enhance STEM education across the curriculum while instilling a culture among BCS schools where computing is viewed as a tool for learning.

(Previously listed under Award # 0918216)

Math Pathways and Pitfalls: Capturing What Works for Anytime Anyplace Professional Development

Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.

Lead Organization(s): 
Award Number: 
0918834
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Full Description: 

Researchers and developers at WestEd are developing, field-testing, and evaluating ten online professional development modules anchored in research-based teaching principles and achievement-boosting mathematics materials. The modules provide interactive learning opportunities featuring real classroom video demonstrations, simulations, and scaffolded implementation. The professional development module development builds on the Math Pathways and Pitfalls instructional modules for elementary and middle school students developed with NSF support. The professional development provided through the use of these modules is web-based (rather than face-to-face), is provided in chunks during the school year and immediately applied in the classroom (rather than summer professional development and school year application), and explicitly models ways to apply key teaching principles to regular mathematics lessons (rather than expecting teachers to extract and apply principles spontaneously).

The project studies the impact of the modules on teaching practice with an experimental design that involves 20 treatment teachers and 20 control teachers. Data are gathered from teacher questionnaires, classroom observations, and post-observation interviews.

Communities of Effective Practice: A Professional Stem Development Model for Teachers of American Indian Students

This project establishes and implements a professional development model with teachers of Native American students by creating a culturally relevant science, technology, engineering and mathematics teacher in-service model. The project seeks to improve teacher preparation in science and mathematics for Native Americans by creating culturally relevant curriculum materials and providing teacher participants with structured professional development. The goal is to develop an in-service model that can be transported to other Native American nations and schools.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0554472
Funding Period: 
Mon, 05/01/2006 to Fri, 04/30/2010

Tool Systems to Support Progress Toward Expert-like Teaching by Early Career Science Educators

The goal of this project is to accelerate the progress of early-career and pre-service science teachers from novice to expert-like pedagogical reasoning and practice by developing and studying a system of discourse tools. The tools are aimed at developing teachers' capabilities in shaping instruction around the most fundamental science ideas; scaffolding student thinking; and adapting instruction to diverse student populations by collecting and analyzing student data on their thinking levels.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0822016
Funding Period: 
Mon, 09/15/2008 to Fri, 08/31/2012
Project Evaluator: 
Jim Minstrell

Pages

Subscribe to Broadening Participation