Low Socio-economic Status Students

Synchronous Online Professional Learning Experiences for Middle Grades Mathematics Teachers in Rural Contexts

This project will develop and implement an innovative online mathematics professional development model designed to provide growth opportunities for teachers in rural districts who normally lack access to such opportunities. The project will focus on developing teacher capacity to enact ambitious, responsive instruction aligned with the Common Core State Standards for Mathematics (CCSSM), and thus will be sustained, interactive, and of sufficient duration to help teachers transform their practices.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1620911
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

All teachers need access to high quality professional development in order to meet the needs of students and teach mathematics as outlined in college and career-ready standards. Online professional development has the potential to expand access to under-resourced areas, including urban districts, and teachers who wish to participate in communities of inquiry but do not have local access to such communities. Building on research on effective face-to-face professional development, including research from the emerging fields of content-focused coaching and video coaching, this project will design and study professional development for middle grades mathematics teachers in rural communities. As schools turn to digital learning contexts, it is inevitable that professional development will follow a similar trend. It is imperative to have research-based models that demonstrate how the features of high-quality face-to-face professional development can be matched or augmented in online contexts. The study has the potential to contribute to research on professional development, especially in the growing areas of online professional development and coaching, and will build from and contribute to the literature on the impact of multiple modalities and synchronicities in online contexts. The project will address the critical need for models of professional development for teachers in rural areas, which has a limited research base. This project is funded by the Discovery Research PreK-12 (DRK-12) Program. The DRK-12 program supports research and development on STEM education innovations and approaches to teaching, learning, and assessment.

The project will develop and implement an innovative online mathematics professional development model designed to provide growth opportunities for teachers in rural districts who normally lack access to such opportunities. The study will take place in two geographically disparate locations in order to research the effectiveness of the model across contexts and to explore the resources and constraints involved in scaling up the model. The project will focus on developing teacher capacity to enact ambitious, responsive instruction aligned with the Common Core State Standards for Mathematics (CCSSM), and thus will be sustained, interactive, and of sufficient duration to help teachers transform their practices. In the design of the professional development, the project will leverage features of emerging technologies that are multimodal and involve a mix of synchronous/ asynchronous communication. The most innovative feature is the online video coaching in which a teacher and coach separately will view and notate video of the teacher's enactment of a collaboratively planned lesson as a precursor to the online post-lesson debriefing. Building from design-based research principles, the project will incorporate iterative cycles of data collection, analysis, reflection, and revision that will explore the effectiveness of the model and inform revisions.


Project Videos

2019 STEM for All Video Showcase

Title: Synchronous Online Professional Development Model

Presenter(s): Jeffrey Choppin, Julie Amador, Cynthia Carson, Ryan Gillespie, Stephanie Martin, & Kristana Textor


An Online STEM Career Exploration and Readiness Environment for Opportunity Youth

This project aims to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM) that will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways.

Award Number: 
1620904
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

CAST, the University of Massachusetts-Amherst, and YouthBuild USA aim to create a web-based STEM Career Exploration and Readiness Environment (CEE-STEM). This will support opportunities for youth ages 16-24 who are neither in school nor are working, in rebuilding engagement in STEM learning and developing STEM skills and capacities relevant to diverse postsecondary education/training and employment pathways. The program will provide opportunity youth with a personalized and portable tool to explore STEM careers, demonstrate their STEM learning, reflect on STEM career interests, and take actions to move ahead with STEM career pathways of interest.

The proposed program addresses two critical and interrelated aspects of STEM learning for opportunity youth: the development of STEM foundational knowledge; and STEM engagement, readiness and career pathways. These aspects of STEM learning are addressed through an integrated program model that includes classroom STEM instruction; hands-on job training in career pathways including green construction, health care, and technology.


Project Videos

2019 STEM for All Video Showcase

Title: Building a Diverse STEM Talent Pipeline: Finding What Works

Presenter(s): Tracey Hall

2018 STEM for All Video Showcase

Title: Bridging the Gap Between Ability and Opportunity in STEM

Presenter(s): Sam Johnston


Developing A Discourse Observation Tool and Online Professional Development to Promote Science, Oral Language and Literacy Development from the Start of School

The goal of this project is to develop a classroom observation tool and an online professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse.

Lead Organization(s): 
Award Number: 
1620580
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

The goal of this project is to develop resources and a professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse. A central component of the Next Generation Science Standards (NGSS) is engaging students in discourse with a focus on formulating and communicating scientific explanations. This project will develop a classroom observation tool that will help teachers examine changes in the quantity and quality of science discourse in K-2 classrooms over time. The project will also develop an online professional development (PD) model that uses the new observation tool to help teachers analyze their own classroom practices and the practice of others to improve classroom efforts to foster improved scientific discourse.

This early stage design and development study will employ a Design-Based Implementation Research (DBIR) approach to develop the new classroom observation tool and online professional development model, and then seek answers to the following research questions: 1) How can a classroom observation measure be developed to effectively capture the range in quality of science discourse in early elementary classrooms?; 2) How can an online PD model be developed based on the new observation tool?; 3) How do teachers' knowledge and instructional practice change over the course of participation in the yearlong PD?; and 4) How does the quantity and quality of science discourse change in K-2 classrooms over the course of teachers' participation in a yearlong online PD experience that is built around the new observation tool? The project will engage 36 teachers and their 36 different classrooms in Michigan and use multiple data sources to understand whether and how teacher knowledge and instructional practices change during participation in the new PD model. Multiple iterations of design, data collection, and refinement will be used to understand how, when, and why features of the PD and observation tool might combine to transform science discourse in early elementary classrooms. In years 3 and 4, the project team will conduct two year-long implementation trials with cohorts of 15 teachers and 5 instructional coaches (experienced science teachers) who will use the PD and tool in order study their implementation and make iterative improvements. The project will also gather data to understand changes in teacher knowledge and practice as well as video data to document changes in classroom discourse.

CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Lead Organization(s): 
Award Number: 
1552535
Funding Period: 
Thu, 09/01/2016 to Tue, 08/31/2021
Full Description: 

This is a Faculty Early Career Development Program (CAREER) project. The CAREER program is a National Science Foundation-wide activity that offers the most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research. The intellectual merit and broader impacts of this study lie in two complementary contributions of the project. First, the development of the statistical framework for the design of multilevel mediation studies has significant potential for broad impact because it develops a core platform that is transferable to other STEM (science, technology, engineering, and mathematics) education areas and STEM disciplines. Second, the development of software and curricular materials to implement this framework further capitalize on the promise of this work because it distributes the results in an accessible manner to diverse sets of research and practitioner groups across STEM education areas and STEM disciplines. Together, the components of this project will substantially expand the scope and quality of evidence generated through mathematics professional development and, more generally, multilevel mediation studies throughout STEM areas by increasing researchers' capacity to design valid and comprehensive studies of the theories of action and change that underlie research programs.

This project will develop a comprehensive framework to inform and guide the analytic design of teacher professional development studies in mathematics. The proposed framework incorporates four integrated research and education components: (1) develop statistical formulas and tools to guide the optimal design of experimental and non-experimental multilevel mediation studies in the presence of measurement error, (2) develop empirical estimates of the parameters needed to implement these formulas to design teacher development studies in mathematics, (3) develop free and accessible software to execute this framework, and (4) develop training materials and conduct workshops on the framework to improve the capacity of the field to design effective and efficient studies of teacher development. An essential goal of the research is to advance a science of teaching and learning in ways that traverse both research and education.

Supporting Teacher Practice to Facilitate and Assess Oral Scientific Argumentation: Embedding a Real-Time Assessment of Speaking and Listening into an Argumentation-Rich Curriculum (Collaborative Research: Henderson)

The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

Lead Organization(s): 
Award Number: 
1621496
Funding Period: 
Thu, 09/01/2016 to Mon, 08/31/2020
Full Description: 

This is an early-stage design and development collaborative study submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) program, in response to Program Solicitation NSF 15-592. The fundamental purpose of this project is to support teacher practice and professional learning around oral scientific argumentation in order to improve the quality of this practice in classrooms. To achieve this purpose, the project will examine the validity of a new technology-based formative assessment tool for classroom argumentation--"Diagnosing the Argumentation Levels of Groups" (DiALoG)--for which psychometric validation work has been conducted in a laboratory setting. The DiALoG assessment tool allows teachers to document classroom talk and display scores across multiple dimensions--both intrapersonal and interpersonal--for formative assessment purposes. The project will work with 6th-8th grade science teachers to monitor and support argumentation through real-time formative assessment data generated by the DiALoG instrument. DiALoG will be used in conjunction with "Amplify Science", a Lawrence Hall of Science-developed curriculum that incorporates the science practice of engaging in argument from evidence, and a suite of newly developed Responsive Mini-Lessons (RMLs), which consist of 20-30 minute instructional strategies designed to assist teachers to provide feedback to students' thinking and follow-up to argumentation episodes that the DiALoG tool identifies in need of further support. The study will allow the refinement and expansion of DiALoG and evaluation of its impact on teacher pedagogical content knowledge and formative assessment practices in widespread classroom use.

The project will address two specific research questions: (1) How can DiALoG be refined to provide a formative assessment tool for oral argumentation that is reliable, practical, and useful in middle school classrooms?; and (2) How does the use of DiALoG affect teacher formative assessment practices around evidence-based argumentation, when implementing science units designed to support oral argumentation? In order to answer these questions, the project will conduct a randomized control trial with 100 teachers: 50 will teach argumentation-focused curriculum with DiALoG, 50 will teach the same curriculum without DiALoG. Both control and treatment teachers will receive all digital and physical materials needed to teach three Amplify Science curriculum units. Treatment teachers will be provided also with the most recent version of DiALoG, including the linked RMLs, as well as support materials for using DiALoG with the Amplify curriculum. A subgroup of focus teachers (5 from the treatment group, and 5 from the control group) will be the subject of additional data collection and analysis. Three focus lessons, in which students are engaging in small-group or whole-class oral argumentation, will be selected from each of the three Amplify Science curricular units. Teacher measures for the randomized control trial will include validated instruments, such as (a) a pre- and post-assessment of teacher pedagogical content knowledge; (b) post-lesson and post-unit surveys in which teachers will self-report on their formative assessment practices; and (c) video recordings of selected lessons in the focus classrooms. In order to observe potential differences in formative assessment practices between treatment and control, protocols will be used to analyze the video recordings of focus classrooms, including (a) Reformed Teaching Observation Protocol; (b) Assessment of Scientific Argumentation inside the Classroom; and (c) Formative Assessment for Teachers and Students. The key outcome of this work will be a research-informed and field-tested prototype to improve the quality of teaching and learning argumentation in middle school science classrooms usable in different learning environments.

CAREER: Making Science Visible: Using Visualization Technology to Support Linguistically Diverse Middle School Students' Learning in Physical and Life Sciences

Award Number: 
1552114
Funding Period: 
Wed, 06/01/2016 to Mon, 05/31/2021
Full Description: 

The growing diversity in public schools requires science educators to address the specific needs of English language learners (ELLs), students who speak a language other than English at home. Although ELLs are the fastest-growing demographic group in classrooms, many are historically underserved in mainstream science classrooms, particularly those from underrepresented minority groups. The significant increase of ELLs at public schools poses a challenge to science teachers in linguistically diverse classrooms as they try to support and engage all students in learning science. The proposed project will respond to this urgent need by investigating the potential benefits of interactive, dynamic visualization technologies, including simulations, animations, and visual models, in supporting science learning for all middle school students, including ELLs. This project will also identify design principles for developing such technology, develop additional ways to support student learning, and provide new guidelines for effective science teachers' professional development that can assist them to better serve students from diverse language backgrounds. The project has the potential to transform traditional science instruction for all students, including underserved ELLs, and to broaden their participation in science.

In collaboration with eighth grade science teachers from two low-income middle schools in North Carolina, the project will focus on three objectives: (1) develop, test, and refine four open-source, web-based inquiry units featuring dynamic visualizations on energy and matter concepts in physical and life sciences, aligned with the Next Generation Science Standards (NGSS); (2) investigate how dynamic visualizations can engage eighth-grade ELLs and native-English-speaking students in science practices and improve their understanding of energy and matter concepts; and (3) investigate which scaffolding approaches can help maximize ELLs' learning with visualizations. Research questions include: (1) Which kinds of dynamic visualizations (simulations, animations, visual models) lead to the best learning outcomes for all students within the four instructional science units?; (2) Do ELLs benefit more from visualizations (or particular kinds of visualizations) than do native-English-speaking students?; and (3) What kinds of additional scaffolding activities (e.g., critiquing arguments vs. generating arguments) are needed by ELLs in order to achieve the greatest benefit? The project will use design-based research and mixed-methods approaches to accomplish its research objectives and address these questions. Furthermore, it will help science teachers develop effective strategies to support students' learning with visualizations. Products from this project, including four NGSS-aligned web-based inquiry units, the visualizations created for the project, professional development materials, and scaffolding approaches for teachers to use with ELLs, will be freely available through a project website and multiple professional development networks. The PI will collaborate with an advisory board of experts to develop the four instructional units, visualizations, and scaffolds, as well as with the participating teachers to refine these materials in an iterative fashion. Evaluation of the materials and workshops will be provided each year by the advisory board members, and their feedback will be used to improve design and implementation for the next year. The advisory board will also provide summative evaluation of student learning outcomes and will assess the success of the teachers' professional development workshops.

Exploring Ways to Transform Teaching Practices to Increase Native Hawaiian Students' Interest in STEM

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

Lead Organization(s): 
Award Number: 
1551502
Funding Period: 
Tue, 09/01/2015 to Fri, 08/31/2018
Full Description: 

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This research is needed since Native Hawaiians are often stereotyped as poor learners; the available STEM workforce falls short of meeting the demands of STEM employers in the state; and as the largest group of public school enrollees, data show a greater decline in percent of students meeting or exceeding proficiency in science at higher grade levels. This project will address these issues by transforming the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

The professional development model for teachers will be situated in the larger national and global contexts of an increasingly technology oriented, urbanized society with associated marginalization of indigenous people whose traditional ecological knowledge and indigenous languages are often overlooked. Guided by the cultural mental model theory and a mixed methods approach, data will be collected through document analysis, surveys, individual and focus group interviews, and pre-post assessments. This approach will capture initials findings about the influence of the professional development model on teaching and learning in science. The end products from this project will be an improved professional development model that is more sensitive to contexts that promote learning by Native Hawaiian students. It will also produce a survey instrument to assess student interest and engagement in science learning whose teachers will have participated in the professional development model being explored. Both outcomes will potentially be instrumental in changing the way approximately 2000 Native Hawaiian students learn about and become more interested in STEM fields through their natural world.

PlantingScience: Digging Deeper Together - A Model for Collaborative Teacher/Scientist Professional Development

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning.

Lead Organization(s): 
Award Number: 
1502892
Funding Period: 
Thu, 10/01/2015 to Mon, 09/30/2019
Full Description: 

This project will design, develop, and test a new professional development (PD) model for high school biology teachers that focuses on plant biology, an area of biology that teachers feel less prepared to teach. The new PD model will bring teachers and scientists together, in-person and online, to guide students in conducting authentic science investigations and to reflect on instructional practices and student learning. The project will also develop and test the outcomes of a summer institute for teachers and a website that will support the online mentoring of students and the professional development of teachers. Outcomes of the project will include the development of a facilitation guide for the teacher professional development model, a website to support student mentoring and teacher professional development, a series of resources for teachers and scientists to use in working with students, and empirical evidence of the success of the new professional development model.

This full research and development project will employ a pre-test/post-test control group design to test the efficacy of a professional development model for high school biology teachers. The professional development model is grounded in a theory of action based on the premise that when teachers are engaged with scientists and students in a technology-enabled learning community, students will demonstrate higher levels of achievement than those using more traditional instructional materials and methodologies. The means of post-intervention outcome measures will be compared across treatment and comparison groups in a cluster-randomized trial where teachers will be randomly assigned to treatment groups. The study will recruit a nation-wide sample to ensure that participants represent a wide array of geographic and demographic contexts, with preference given to Title 1 schools. The research questions are: a) To what extent does participation in the Digging Deeper community of teachers and scientists affect teacher knowledge and practices? b) To what extent does participation in the Digging Deeper community of teachers and scientists affect scientists? quality of mentorship and teaching? And c) To what extent does student use of the online program and participation in the learning community with scientist mentors affect student learning? Instruments will be developed or adapted to measure relevant student and teacher knowledge, student motivation, and teacher practices. Computer-mediated discourse analysis will be used over the course of the study to track online interactions among students, teachers, and science mentors.

Mathematical and Computational Methods for Planning a Sustainable Future II

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. 

Lead Organization(s): 
Award Number: 
1503414
Funding Period: 
Wed, 07/15/2015 to Sun, 06/30/2019
Full Description: 

The project will develop modules for grades 9-12 that integrate mathematics, computing and science in sustainability contexts. The project materials also include information about STEM careers in sustainability to increase the relevancy of the content for students and broaden their understanding of STEM workforce opportunities. It uses summer workshops to pilot test materials and online support and field testing in four states. Outcomes include the modules, tested and revised; strategies for transfer of learning embedded in the modules; and a compendium of green jobs, explicitly related to the modules. The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The STEM+Computing Partnerships (STEM+C) Program is a joint effort between the Directorate for Education & Human Resources (EHR) and Directorate Computer & Information Science & Engineering (CISE). Reflecting the increasing role of computational approaches in learning across the STEM disciplines, STEM+C supports research and development efforts that integrate computing within one or more STEM disciplines and/or integrate STEM learning in computer science; 2) advance multidisciplinary, collaborative approaches for integrating computing in STEM in and out of school, and 3) build capacity in K-12 computing education through foundational research and focused teacher preparation

The project is a full design and development project in the learning strand of DRK-12. The goal is to enhance transfer of knowledge in mathematics and science via sustainability tasks with an emphasis on mathematical and scientific practices. The research questions focus on how conceptual representations and the modules support students' learning and especially transfer to novel problems. The project design integrates the research with the curriculum development. It includes a mixed methods data collection and analysis from teachers and students (e.g., interviews, content exams, focus groups, implementation logs). Assessment of student work includes both short, focused problems in the content area and longer project-based tasks providing a range of assessments of student learning. The investigators will develop a rubric for scoring student work on the tasks. The curriculum design process includes iterations of the modules over time with feedback from teachers and using data collected from the implementation.

Quality Urban Ecology Science Teaching for Diverse Learners

This project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL).  Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

Lead Organization(s): 
Award Number: 
1503519
Funding Period: 
Sat, 08/01/2015 to Fri, 05/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This exploratory research project will examine the relationship between teacher professional development associated with newly developed modules in urban ecology and the achievement and engagement of long-term English learners (LTEL). Participants in the project will include students in grades 4-8 in a large urban school district, elementary school teachers, middle school science teachers, and middle school teachers of English language arts. Existing Urban Ecology learning modules will be enhanced to accommodate the needs of LTELs, and teachers will participate in professional development aimed at using the new materials to effectively integrate academic science discourse and literacy development for LTELs.

The project will develop two enhanced urban ecology modules (47 lessons) for English learners in grades 4-8; science language and literacy assessments for English language learners (ELLs); an ELL STEM career awareness inventory; an urban ecology for ELLs teacher knowledge scale, and an urban ecology for ELLs pedagogy observation protocol. The materials will be tested with a stratified random sample of students identified by achievement level (low, medium, and high) and linguistic background (mainstream, LTEL, and "at risk" of becoming LTEL). A mixed-methods research design will be used to test the hypothesis that the quantity and quality of LTEL science language and literacy achievement will increase as a result of teacher participation in implementing the newly developed transdisciplinary framework for Urban Ecology for English Learners.

Pages

Subscribe to Low Socio-economic Status Students