for Blind and Visually Impaired Students

Motivation

Pressing Challenge for Students with Blindness or Visual Impairments: **Graphical Access**

Growing Problem: Educational Content

http://www.brailleauthority.org/tg/web-manual/u3parts-of-flower.htm

is rapidly moving to digital formats

Overarching Goal

Create accessible digital graphics using multimodal feedback on touchscreens

Useful in interpreting graphs [1], maps [2], grids [3], and for **panning and zooming** on touchscreens [4][5].

	Wave-Like Vibration Constant Vibration	Pulse-Like Vibration Click-Like Vibration	Click-Like Vibration Pulse-Like Vibration Audio Tone Audio Tone
--	---	--	--

- Auditory Inflection Points: • Improved average deviations - 1 point: 7-8 mm; 3 point: 7-9 mm
- No difference between the 2 cases User preference is important!

Shape Identification

Can basic shapes be identified [6]?

- Identification Accuracy: >78% Pentagon was poor – 47%.
- Exploration Strategies: Circling of Vertices or Junctions and Anchoring
- Necessary to signify vertices

Tablet-sized devices more useful in situations where the **accuracy** of the interpretation of the graphic is important. Phone-sized screens afford comparable accuracy, but are **quicker** to explore.

Optimal vibrotactile line width: 4 mm **Gap width between vibrotactile lines:** 4 mm ***Borders around lines encourage finer**

(Vertices) should be represented with a different cue (ideally a different modality) Physical Reference Markers on the Screen Border promote better navigation and enable kinesthetic referencing

*****A Read-Aloud Textual Background **Description is helpful at the onset of** exploration for context **MORE TO COME!**

[1] Klatzky, Giudice, Bennett, & Loomis, 2014 [2] Poppinga, Magnusson, Pielot, & Rassmus-Gröhn, 2011 [3] Gorlewicz et al, 2014 [4-5] Palani & Giudice, 2017, 2016 [6] Tennison & Gorlewicz, 2016

Effect of Screen Size

 Impact of Screen Size on Simple Pattern Matching Task

		_	-				
		-				-	

Guidelines and Framework

tracing but solid lines are sufficient Inflection Points or Points of Interest

Acknowledgements

We acknowledge the National Science Foundation for supporting this work (Grant #1644538).

References