DRK-12 RESEARCH METHODS WEBINAR | MARCH 26, 2020

SOCIAL NETWORK ANALYSIS: AN INTRODUCTION

M A K I N G R E S E A R C H R E L E V A N T

Kyle Fagan, PhD Researcher

Ben Kalina, MA Senior Researcher with

Melissa Rasberry, EdD Senior Technical Assistance Consultant

Welcome!

Take a moment to introduce yourself in the chat box. Please tell us: your name, organization, and affiliation with the DRK-12 program (e.g., PI, project team member, evaluator, aspiring PI).

DRK-12 Research Methods Webinar Series

Melissa Rasberry, EdD Senior Technical Assistance Consultant

Learning outcomes

Following this session, participants will be able to:

- Define social network analysis (SNA) terminology.
- Identify the uses, benefits, and limitations of SNA.
- Understand key considerations for data collection, analysis, and network visualization.
- Consider ways SNA might be useful in future research in STEM education.

Today's webinar

http://cadrek12.org/

Today's webinar

- Listen-only mode
- Use chat pod to submit content and technical questions at any time
- Opportunity for Q&A at the end of each section

Audience Chat (Everyone) 三~

Today's webinar

- To see this most clearly, you may want to use the "Full Screen" button in the upper right of the presentation pod.
- In order to submit a question, you will need to click the "Full Screen" button again to resume normal view.

LF 94

Presenters

Kyle Fagan, PhD

Researcher kfagan@air.org

Ben Kalina, MA

Senior Researcher bkalina@air.org

Logistics

There are a few tools we will use throughout the webinar, so let's test them out:

Drawing Tool: Where are you calling in from? Use the marker tool to mark on the map.

AMERICAN INSTITUTES FOR RESEARCH | AIR.ORG

Logistics

There are a few tools we will use throughout the webinar, so let's test them out:

Poll 1: Respond to the poll indicating your pet preference.

Presenters

Mable

Kyle Fagan, PhD

Researcher kfagan@air.org

Trip

Ben Kalina, MA

Senior Researcher bkalina@air.org Agenda

Data collection and analysis

Introduction to social network analysis

Future research in STEM education Looking forward

How would you describe your level of understanding of social network analysis?

Social network analysis

- A way of thinking about social systems that focuses on the relationships between the actors that make up a system.
- A set of methodological techniques that aim to describe and explore patterns apparent in social relationships that individuals and groups form with one another within a given context.

Articles with social network analysis identified as a topic (1996–2020)

Web of Science: Retrieved from https://apps.webofknowledge.com/ on February 19, 2020

Articles with social network analysis identified as a topic (1996–2020)

706 Computer Science Information Systems	455 Education Educational Research	328 Environmental Sciences	Engineering C	12 ommun- ations	nmun- Computer		209 Computer Science Theory Methods	
587 Information Science	405 Computer Science Artificial Intelligence	312 Public Environmental Occupational Health	206 Multidisciplinary	188 Ecology	186 Geogr	aphy		
Library Science	405 Computer Science	292 Business	Sciences 201				Science	
519 Management	Interdisciplinary Applications 381	283	Social Sciences Interdisciplinary	171 Economi	171 Economics		159 149 Health Zoo Care ogy	
	Environmental Studies	Sociology	194 Operations Researc Management Sciend			Sciences Services		

Web of Science: Retrieved from https://apps.webofknowledge.com/ on February 19, 2020

Articles with social network analysis identified as a topic (1996–2020)

706 Computer Science Information Systems	455 Education Educational Research	328 Environmental Sciences	Engineering	212 Commun- cations	209 Computer Science Software Engineeri		209 Compute Science Theory g Methods		
587 Information Science Library Science	405 Computer Science Artificial Intelligence	312 Public Environmental Occupational Health	206 Multidisciplinar Sciences	188 y Ecology	186 Geogr	186 Geography		182 Political Science	
519	405 Computer Science Interdisciplinary Applications	292 Business	201 Social Sciences Interdisciplinary	/ 171 Economi	171 Economics			159 Health Care Sciences Services	
Management	381 Environmental Studies	283 Sociology	194 Operations Resear Management Scier	nce Green Sus	Scie				

Web of Science: Retrieved from https://apps.webofknowledge.com/ on February 19, 2020

Articles with *social network analysis* identified as a topic (2001–2020) in Education and Educational Research

Web of Science: Retrieved from <u>https://apps.webofknowledge.com/</u> on February 19, 2020

Social network analysis helps us:

- Visualize data through sociograms to gain insights.
- Understand the structure of a network.
- Understand the position of actors within a network.

Let's take **happy hour.** We can see in this image a number of individuals celebrating happy hour.

Each of these individuals can be represented by a blue dot.

If we were to watch for a while, we could start to track who is talking to whom.

These are the same actors, the same ties, just arranged differently.

So what was a busy, messy sociogram becomes an image that we can use to make sense of the patterns of conversations taking place at this happy hour.

We can change the color of the actors to illustrate some sort of attribute—for instance, the company where an individual works.

We can also adjust the size of the actor—for instance, to represent the number of individuals to whom they talked.

Within **STEM education**, social network analysis can help answer a number of research and evaluation questions for instance:

- What communication patterns emerge when classroom members (i.e., students and their teachers) engage in the science practice of argumentation? (e.g., González-Howard).
- How do individuals shape the flow of information among a school team of math teachers? (e.g., Yonezawa).
- What types of learning events produce healthier networks among educators across districts? (e.g., Yonezawa).

How would you describe your level of understanding of social network analysis?

Data collection and analysis

Before we move on to data collection and analysis, are there any questions?

Data collection and analysis

Actors | Ties | Methods

Visualization | Structure | Position

Data collection and analysis

Actors | Ties | Methods

Actors

- Actors are the entities that make up the network.
- Actors can be individuals (e.g., a person or a gorilla) or collectivities (e.g., teams or organizations).
- Actors can also be called *nodes*, *vertices*, and *agents*.

Data collection and analysis

Actors | Ties | Methods

Ties

A typology of ties studied in social network analysis.

Similarities			Social Relations				Interactions	Flows
Location	Membership	Attribute	Kinship	Other role	Affective	Cognitive	e.g.,	e.g.,
e.g.,	e.g.,	e.g.,	e.g., Mether of	e.g., Friend of	e.g.,	e.g.,	Sex with	Information
Same spatial and	Same clubs	Same gender	Mother of Sibling of	Friend of Boss of	Likes Hates	Knows Knows	Talked to Advice to	Beliefs Personnel
temporal	Same events	Same attitude		Student of	etc.	about	Helped	Resources
Space	etc.	etc.		Competitor of		Sees as happy	Harmed	etc.
						etc.	etc.	

Borgatti, Mehra, Brass, & Labianca (2009)

• Ties can also be called *edges, links,* and *arcs*.

Ties can also be called *edges, links,* and *arcs*.

Data collection and analysis

Actors | Ties | Methods

Ties

 \bullet

A typology of ties studied in social network analysis.

Similarities			Social Relations				Interactions	Flows
Location e.g., Same	Membership e.g., Same	Attribute e.g., Same	Kinship e.g., Mother of	Other role e.g., Friend of	Affective e.g., Likes	Cognitive e.g., Knows	e.g., Sex with Talked to	e.g., Information Beliefs
spatial and temporal space	clubs Same events etc.	gender Same attitude etc.	Sibling of	Boss of Student of Competitor of	Hates etc.	Knows about Sees as happy etc.	Advice to Helped Harmed etc.	Personnel Resources etc.

Borgatti, Mehra, Brass, & Labianca (2009)

Actors | Ties | Methods

Surveys

Interviews

Observations

Archival data

Spillane, Healey, & Min Kim (2010)

Actors | Ties | Methods

Interviews

Surveys

Observations

Archival data

 $\leftarrow \rightarrow$

In the last six months, how often have you had networkrelated interactions with other network members via email or phone, or face to face?

Feldstein & Sherer (2018)

Actors | Ties | Methods

Surveys

Interviews

Observations

Archival data

Whom do you regard as a critical ally or partner in the reform movement?

Ansell, Reckhow, & Kelly (2009)

Actors | Ties | Methods

Surveys

Interviews

Observations

Archival data

Wagner & González-Howard (2018)

Supovitz, Daly, del Fresno, & Kolouch (2017)

Actors | Ties | Methods

Surveys

Interviews

Observations

Archival data

Poll 2: Given the context of your work, which method seems most appropriate?

Social network analysis helps us:

- Visualize data through sociograms to gain insights.
- Understand the **structure** of a network.
- Understand the **position** of actors within a network.

Stata

Social network analysis helps us:

- Visualize data through sociograms to gain insights.
- Understand the structure of a network.
- Understand the position of actors within a network.

Stata

Visualization | Structure | Position

Visualization | Structure | Position

the people I regularly go to for advice.

Who do you typically go to for advice on teaching science?

Visualization | Structure | Position

Visualization | Structure | Position

	Sofia	Jameela	Sam	Kai	Marcus
Sofia	0	0	0	1	1
Jameela	0	0	1	1	0
Sam	0	1	0	0	0
Kai	1	1	0	0	1
Marcus	1	0	0	1	0

Incomi	ng ties

		Sofia	Jameela	Sam	Kai	Marcus
	Sofia	0	0	0	1	1
ties	Jameela	0	0	0	1	0
Outgoing	Sam	0	1	0	0	0
Outg	Каі	1	1	0	0	0
	Marcus	0	0	0	1	0

Visualization | Structure | Position

	Sofia	Jameela	Sam	Kai	Marcus
Sofia	0	0	0	1	1
Jameela	0	0	1	1	0
Sam	0	1	0	0	0
Каі	1	1	0	0	1
Marcus	1	0	0	1	0

	Incoming ties							
		Sofia	Jameela	Sam	Kai	Marcus		
	Sofia	0	0	0	1	1		
ties	Jameela	0	0	0	1	0		
Outgoing ties	Sam	0	1	0	0	0		
Oute	Каі	1	1	0	0	0		
	Marcus	0	0	0	1	0		

Actor	School	Role	Age
Sofia	1	Teacher	24
Jameela	1	Teacher	38
Sam	1	Instructional Aide	54
Каі	1	Instructional Coach	45
Marcus	1	Teacher	48

	Incoming ties							
		Sofia	Jameela	Sam	Kai	Marcus		
	Sofia	0	0	0	1	1		
ties	Jameela	0	0	0	1	0		
Outgoing ties	Sam	0	1	0	0	0		
Oute	Каі	1	1	0	0	0		
	Marcus	0	0	0	1	0		

Attribute list

Poll 3: Which of these sociograms fits the data in the adjacency list?

А	В
В	Α
В	С
В	D
С	В
С	D
С	Е
D	В
D	С
E	С

Poll 3: Which of these sociograms fits the data in the adjacency list?

А	В
В	Α
В	С
В	D
С	В
С	D
С	E
D	В
D	С
E	С

Poll 4: Which of these sociograms fits the data in the adjacency matrix?

	Α	В	С	D	Е
Α	0	1	0	1	0
В	1	0	1	1	0
С	0	1	0	1	0
D	1	1	1	0	0
E	0	0	0	0	0

Poll 4: Which of these sociograms fits the data in the adjacency matrix?

	А	В	С	D	Ε
Α	0	1	0	1	0
В	1	0	1	1	0
С	0	1	0	1	0
D	1	1	1	0	0
E	0	0	0	0	0

Social network analysis helps us:

- Visualize data through sociograms to gain insights.
- Understand the **structure** of a network.
- Understand the **position** of actors within a network.

Stata

Visualization | Structure | Position

Size is the number of actors in the network.

Density is the number of ties relative to the total possible number of ties.

Visualization | Structure | Position

Size is the number of actors in the network.

Density is the number of ties relative to the total possible number of ties.

Reciprocity is the extent to which ties are bidirectional; it indicates the mutuality of the network's ties.

* Needs to be calculated on directed networks.

Social network analysis helps us:

- Visualize data through sociograms to gain insights.
- Understand the **structure** of a network.
- Understand the **position** of actors within a network.

Stata

Visualization | Structure | Position

Adapted from Duke Mod-U: Social Science Research Institute

Visualization | Structure | Position

Adapted from Duke Mod-U: Social Science Research Institute
Visualization | Structure | Position

In-degree is the number of incoming ties.

Adapted from Duke Mod-U: Social Science Research Institute

Visualization | Structure | Position

Adapted from Duke Mod-U: Social Science Research Institute

Visualization | Structure | Position

Adapted from Duke Mod-U: Social Science Research Institute

AMERICAN INSTITUTES FOR RESEARCH | AIR.ORG

Out-degree

Visualization | Structure | Position

Adapted from Duke Mod-U: Social Science Research Institute

Visualization | Structure | Position

Adapted from Duke Mod-U: Social Science Research Institute

Visualization | Structure | Position

Adapted from Duke Mod-U: Social Science Research Institute

Poll 5: Who has the **highest degree** centrality?

В

Degree is a measure of the number of ties.

B

Poll 5: Who has the **highest degree** centrality?

B

Degree is a measure of the number of ties.

Poll 6: Who has the **lowest degree** centrality?

В

Degree is a measure of the number of ties.

Poll 6: Who has the **lowest degree** centrality?

B

Degree is a measure of the number of ties.

Poll 7: Who has the highest betweenness centrality?

Betweenness is a measure of how often an actor is a bridge between other actors.

B

Poll 7: Who has the highest betweenness centrality?

Betweenness is a measure of how often an actor is a bridge between other actors.

B

Challenges and Limitations • Defining network boundaries

- Gaining access and issues of confidentiality
- Limitations associated with data collection methods
- Missing data
- Violating the assumption of independence
- Learning curve with new platforms

Before we move on to future research in STEM education, **are there any questions**?

Future research in STEM education

Future research in STEM education

Think about a future project in which SNA might be a good fit.

Future research in STEM education

Think about a future project in which SNA might be a good fit.

What would you want to know about the **network as a whole**?

What would you want to know about actors within the network?

Which aspects of social network analysis are you interested in learning more about? Use the pen tool to place a mark.

Recommended reading

Analyzing Social Networks

2nd Edition

 (\mathbf{S})

Stephen P Borgatti Martin G Everett Jeffrey C Johnson

Webinar 2: Applying Social Network Analysis to STEM Education Research

Monday April 20, 2020 12:00 – 1:15 pm CT

María González-Howard, PhD

Assistant Professor in STEM Education at The University of Texas at Austin

Susan Yonezawa, PhD

Project Research Scientist at UC San Diego-CREATE

Kyle Fagan, PhD Researcher <u>kfagan@air.org</u>

Ben Kalina, MA Senior Researcher bkalina@air.org

Thank you!

DRK-12 METHODS SERIES WEBINAR

SOCIAL NETWORK ANALYSIS | MARCH 26, 2020

M A K I N G R E S E A R C H R E L E V A N T

THANK YOU

AMERICAN INSTITUTES FOR RESEARCH | AIR.ORG

Copyright © 20XX American Institutes for Research. All rights reserved.

References

Ansell, C., Reckhow, S., & Kelly, A. (2009). How to reform a reform coalition: Outreach, agenda expansion, and brokerage in urban school reform. *Policy Studies Journal*, *37*(4), 717-743.

Au, W., & Ferrare, J. J. (2014). Sponsors of policy: A network analysis of wealthy elites, their affiliated philanthropies, and charter school reform in Washington State. *Teachers College Record*, *116*(8), 1-24.

Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. *Science*, 323(5916), 892-895.

Duke Mod-U: *Powerful concepts in social science*. Social Science Research Institute (n.d.). Retrieved from https://www.youtube.com/channel/UCDfHkEuoKb_TXYkQY6BkIIg

Feldstein, S. & Sherer, D. (2019). Using social network analysis for collaborative design in a NIC. Paper presented at the Summit on improvement in Education, *Carnegie Foundation for the Advancement of Teaching*.

Spillane, J. P., Healey, K., & Kim, C. M. (2010). Leading and managing instruction: Using social network analysis to explore formal and informal aspects of the elementary school organization. In *Social network theory and educational change*. Harvard University Press.

Supovitz, J., Daly, A.J., del Fresno, M., & Kolouch, C. (2017). *#commoncore Project*. Retrieved from <u>http://www.hashtagcommoncore.com</u>.

Wagner, C. J., & González-Howard, M. (2018). Studying discourse as social interaction: The potential of social network analysis for discourse studies. *Educational Researcher*, 47(6), 375-383.