

Supporting Science Learning and Teaching in Middle School Classrooms through Automated Analysis of Students' Writing

Sadhana Puntambekar (UW-Madison), Rebecca Passonneau (PSU), & ChanMin Kim (PSU)

Goals and Objectives

- Develop NLP technology (PyrEval) to provide students and teachers with real-time feedback about students' written explanations to:
- Help students reflect on quality of their scientific explanations and foster ability to use evidence; and
- Provide teachers with aggregated and individual information about students' explanation writing so they can better scaffold students' science learning

Research Questions

- How does feedback from PyrEval affect the quality of students' written scientific explanations?
- 2. How do **teachers use** the **automated assessments** and summaries of students' explanations during instruction?
- 3. In what ways does scaffolding from the auto-coder and teacher feedback support students' explanations writing and learning?

Context: Forces and Motion Unit

- Addresses NGSS core ideas, science practices, and crosscutting concepts for middle school physics
- Immerses student in an authentic engineering design challenge to construct a fun, but safe roller coaster

Digital Science Notebook

- 1. Support for Student Writing
 - Scaffolding for design and scientific writing
 - Automated integration of experiment data from the roller coaster simulation
 - $\circ~$ NLP feedback on student writing
- 2. Support for Teacher Scaffolding
 - Monitor students' progress through design and writing
 - Track iterative design history of student experiments
 - Use NLP summaries to show a map of common and/or persistent (mis)understandings and explanations
- 3. Support for Management
 - Deliver notifications to class, groups, or individual students
 - Export data needed to answer research questions
 - Provide support for classroom management

NoteBook Architecture Infrastructure

- Industry standard stack of React, Express, Node.js, and MongoDB
- Focused on user-friendly and accessible aesthetics and appearance
- Web-based application usable by various devices

Physics with Re	Bercoasters
	Hypothesis
© Lab	
	Make some predictions about how the car mass attests your risk: It you increase the mass of you roller coaster car from your last set of experiments, then the:
Hypotheses	Potential Energy will:
	O decrease
	O stay the same
	Kinetic Energy will:
P Design	O decrease
	O stay the same
	Explain why you think this:
	Tear regionar

Automated Analysis of Student Writing

- 1. Short Answers SFRN: Semantic Feature-wise Relation Network
 - BERT encodes **Q**(uestion)-**R**(eference)-**A**(nswer) into 3 vectors
 - RNs learn vector abstractions over tuples of vectors, e.g. QRA triples
 - $\,\circ\,$ Up to 11% performance gain over SOTA on benchmarks
- 2. Essays PyrEval: Wise crowd content evaluation
 - $\circ~{\bf WTMF:}~{\bf phrase}~{\bf vectors}~{\bf for}~{\bf reference}~{\bf essays}~{\bf and}~{\bf student}~{\bf essays}$
 - **EDUA:** set partition algorithm finds optimal sets of vectors in reference essays, producing **weighted** content units
 - $\circ~{\bf WMIN}:$ independent set algorithm matches student text to

weighted conte	nt units
----------------	----------

Plans for Year 2

- Revise digital notebook and wise-crowd model based on feedback from advisory board and middle school science teachers
- Test iteration 1 with two science teachers (200 students) to examine (a) how the automated assessment and feedback (b) how teachers use the automated aggregate summaries

Project Team Members

William Goss; Vishesh Kumar; Dana Gnesdilow; Xuesong Kang (UW-Madison)

Zhaohui Li; Purushartha Sing; Mohammad Wasih; Yajur Tomar (PSU)

This project is funded by the National Science Foundation (NSF), grant # 2010483. Any opinions, findings, and conclusions or recommendations expressed in these materials are those of the author(s) and do not necessarily reflect the views of the NSF.