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Introduction 

We now live in the 21
st
 century, although you might not realize that fact if you were a 

student sitting in a ―typical‖ mathematics class in most rural or urban school districts in the USA. 

Outside of school, technology tools and their applications are an integral part of modern life. We 

use and depend on them for entertainment, information, communication, transportation, 

commerce, research, comfort, shelter, safety, food production, medical treatment, as well as 

creative, self-expression and social networking.  

At the beginning of the 21st Century in the USA, the National Council of Teachers of 

Mathematics (NCTM) made a very strong recommendation for the integration of technology in 

the teaching and learning of mathematics by including the Technology Principle as one of the six 

principles that frame the NCTM Principles & Standards for School Mathematics (NCTM, 2000).  

The Technology Principle states: ―Technology is essential in teaching and learning mathematics; 

it influences the mathematics that is taught and enhances students' learning.‖  This strong claim 

has research evidence to support it but more research is needed to understand the affordances and 

constraints that affect this principle’s implementation, both inside and outside of formal school 

settings. 

The available technologies for teaching and learning, both in and out of school have 

expanded tremendously during the first decade of this century.  Alongside computers and 

calculators we have iPods, iPhones, and now iPads; hand-held computing devices such as the TI-
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nSpire (which operates more like a computer than a calculator); networked calculators; wireless 

response systems; scientific probes that can be connected to hand-held devices or computers for 

generating real data in real time (CBL’s and CBR’s); Interactive SMART Boards and now, 

interactive SMART Tables for collaborative problem solving activities.  The explosion in web-

based resources for finding information, for social networking, for entertainment and for 

collaborative problem solving in on-line communities has changed the way we live our lives – 

outside of school.  Perhaps one powerful reason for why almost a third of the students entering 

high schools in this country ―drop out‖ before completing their high school diploma (Gonzalez, 

2010) is that education in many schools is presented in the same way as it was in the 19
th

 and 

20
th

 centuries.  The educational process in school bares little resemblance to how people learn 

outside of school. 

As educators, we need to investigate how children and young adults are making use of 

the technological environment in which they live and what they are learning from that use. As 

mathematics educators, we need to understand how we might harness this technological 

environment to enhance the learning and teaching of mathematics – both in-school and out-of-

school.  

Needed Research on Technology in Mathematics Education 
 

Research on Technology in Mathematics Education needs to encompass many dimensions and 

address important questions related to human development in our technological world.  The 

following list is one possible starting point.  I shall elaborate on each of these points throughout 

the paper and demonstrate examples during my presentation: 

 Learning: How and what do students learn through use of technology? 

 Teaching: How and what do teachers teach using technology? 

 Curriculum: What mathematics can and should be accessible through the use of 

technology? 

 Design of Technology: How does the specific interface design of a technology impact its 

use? 

 Use of technology: Actual use may differ from the designed use – how do the different 

uses affect learning and teaching outcomes? 
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 New Media for learning: New networking and social interaction technologies offer new 

media for learning both inside and outside the classroom. How and what kind of learning 

may take place in these new media? 

 New Media for teaching: New networking and social interaction technologies offer new 

media for teaching both inside and outside the classroom. How and what kind of teaching 

may take place in these new media? 

Theoretical Frameworks for Addressing Research on Technology 

What are appropriate theoretical frameworks for investigating all of the above?  This 

question was the focus of several chapters in the recently published 17
th

 ICMI Study: 

Mathematics Education and Technology—Rethinking the Terrain edited by Celia Hoyles and 

Jean-Baptiste Lagrange (2009). In Chapter 7, Paul Drijvers, Carolyn Kieran and Maria-

Alessandra Mariotti (with 8 members of their working group) provide an historical overview of 

theoretical perspectives they consider relevant to integrating technology into mathematics 

education (Drijvers, Kieran & Mariotti, 2009).  They pay particular attention to Instrumentation 

Theory and Semiotic Mediation, but make ―a plea for the development of integrative theoretical 

frameworks that allow for the articulation of different theoretical perspectives.‖ (p. 89)   

Instrumentation Theory 

Many European researchers (especially in France) have adopted and adapted 

Instrumentation Theory (Verillon & Rabardel, 1995) for their research on the use of 

technological tools. Central to this theory is the process of Instrumental Genesis -- How a tool 

changes from an artifact to an instrument in the hands of a user, and how both the tool and user 

are transformed in the process. Kathy Heid (2005) describes instrumental genesis as the 

development of a working relationship between the user and the tool: 

One needs to be careful not to give the impression that technology itself makes the difference 

in teaching and learning. It is, of course, not the technology that makes the difference but 

rather how it is used and by whom. Those who have studied the use of technology in 

mathematics teaching and learning have noted that technology mediates learning. That is, 

learning is different in the presence of technology. The representations that students access 

may conceal or reveal different features of the mathematics, and the procedures students 

assign to the technology (as opposed to doing them by hand) may affect what students 

process and learn. Moreover, how a student uses technology is dependent on his or her ever-
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changing relationship to the technology. When a user first encounters a particular 

technological tool, his or her uses of the technology may be confined to rote application of the 

specific keystrokes or procedures that had been introduced. As the student develops facility 

with, and an understanding of, the capabilities of the technology, the technology becomes an 

instrument that the student can tailor flexibly to specific needs. (p. 348) 

Kieran and Guzmán (2005) describe this process as follows: ―A tool, which starts out merely as 

an artifact, becomes an instrument for the user only when he or she has been able to appropriate 

it for himself or herself and has integrated it fully within his or her activity.‖ (p. 36) They explain 

further: ―in this process of transforming the artifact into an instrument, the learner is not just 

simply learning tool-techniques that permit him or her to respond to given mathematical tasks. 

Mathematical concepts codevelop [sic] while the learner is perfecting his techniques with the 

tool.‖ (p. 36).  Following from the work of Artigue (2002) and Lagrange (2000) they adopt a 

dialectical interaction triad of Task, Technique, and Theory that serves as their conceptual 

framework for their study of the role of technology in the development of mathematical thinking.  

They propose that tool-techniques constitute a bridge between tasks and the emergence of 

theoretical (i.e. mathematical) knowledge. ―It is by looking at the techniques that students 

develop with their technological instruments, in response to certain tasks, that we obtain a 

window into the evolution of their mathematical thinking.‖ (Kieran & Guzmán, 2005, p.36) 

Semiotic Mediation 

The notion of semiotic mediation, according to which cognitive functioning is intimately 

linked to the use of signs and tools, and affected by it was introduced by Vygotsky (1978). 

Elaboration of this notion with respect to both mathematics learning and the use of technological 

tools has proved to be a useful theoretical framework for many researchers (Saenz-Ludlow & 

Presmeg, 2006). Drijvers et al. (2009) describe a semiotic approach to mediation as follows: 

The mediating potential of any artifact resides in the double semiotic link that such an 

artifact has with both the meanings emerging from its use for accomplishing a task, and 

the mathematical meanings evoked by that use, as recognized by an expert in 

mathematics. In this respect, any artifact may be considered both from the individual 

point of view – for instance, the pupil coping with a task and acting with a tool to 

accomplish it – and from the social point of view – for instance, the corpus of shared 

meanings recognizable by the community of experts, mathematicians or mathematics 



Olive: KSESM Keynote Address, page 5 

teachers. From a socio-cultural perspective, the tension between these two points of view 

is the motor of the teaching-learning process centered in the use of an artifact. (pp. 116-

117) 

Thus any artifact (including those belonging to our new technologies) may offer valuable support 

to the learning of mathematics according to its semiotic potential.  How we identify that potential 

might require different approaches (Bartolini Bussi & Mariotti 2008).  Drijvers et al. (2009) 

suggest that an ―a priori analysis [of the double semiotic relationship], involving in parallel two 

interlaced perspectives, the cognitive and the epistemological‖ (p. 117) may lead to the 

identification of the semiotic potential of an artifact that can be related to particular educational 

goals. These researchers recommend that the determination of the semiotic potential of any 

learning tool should be an element in the design of any pedagogical plan centered on the use of 

that tool.  They also suggest that:  

The construct of instrumental genesis, discussed above, provides a crucial contribution to such 

analysis. As long as the evolution of personal meanings is related to the accomplishment of a 

task, it can be analyzed in terms of instrumental genesis, that is, meanings may be related to 

specific utilization schemes that themselves are related to the specificity of the tasks proposed to 

students. Thus, an instrumental approach becomes fundamental not only in the identification of 

semiotic potential, but also in the design of appropriate tasks, as well as in the interpretation of 

pupils’ actions and 'speech' acts. (p. 117) 

Integrative Frameworks 

The frameworks discussed above focus mainly on the interaction of the learner and the 

tool.  We need to take into account the role of the teacher (or more experienced other) in the 

didactical situations made possible by the integration of technology.  In Chapter 8 of the ICMI 

study, Olive and Makar (2009) along with 4 members of their working group, focus on the 

mathematical knowledge and practices that may result from access to digital technologies. They 

put forward a new tetrahedral model derived from Steinbring’s (2005) didactic triangle (see 

Figure 1) that integrates aspects of instrumentation theory and the notion of semiotic mediation. 

This new model illustrates how interactions among the didactical variables: student, teacher, task 

and technology (that form the vertices of the tetrahedron) create a space within which new 

mathematical knowledge and practices may emerge. Olive and Makar state ―It is not arbitrary 

that we place the student at the top of this tetrahedron as, from a constructivist point of view, the 
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student is the one who has to construct the new knowledge and develop the new practices, 

supported by teacher, task and technology.‖ (p. 168) 

 

Figure 1: The Didactical Tetrahedron (from Olive & Makar, 2009, p. 169) 

 

In her dissertation study of three high school mathematics teachers teaching with technology, 

Hyeonmi Lee (2010) focused on the teacher vertex of this tetrahedron.  She incorporated Goos’ 

(2005) modification of Vygotsky’s construct of the Zone of Proximal Development (ZPD) as it 

relates to teachers’ beliefs, knowledge, and skills in working with technology.  She also included 

Valsiner’s (1987) additions to Vygotsky’s ZPD, the Zone of Promoted Action (ZPA) and the 

Zone of Free Movement (ZFM) in her theoretical model for teaching with technology. Based on 

Goos and Soury-Lavergne’s (2009) application of these zones to teachers teaching with 

technology, Lee investigated the participant teachers’ teaching from these three perspectives:  

 ZPD: teachers’ beliefs, knowledge, and skills in working with technology  

 ZPA: teacher education, professional development, and teaching experience with 

colleagues  

 ZFM: access to hardware, software and laboratories, access to teaching materials, support 

from colleagues, curriculum and assessment requirements, and students’ attitudes and 

abilities. (p. 22) 

Figure 2 illustrates Lee’s view of how these three zones impact on the teacher’s use of 

technology. 
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Figure 2: Three metaphors of ZPD, ZPA, and ZFM in working with technology (from Lee, 2010) 

 

Lee went further with her theoretical model, incorporating modifications of Zbiek et al.’s 

(2007) didactic pyramid for teachers as learners in technology-integration courses. She further 

investigated how this pyramid influences the three zone theories that she placed as vertices of a 

tetrahedron, with the teacher as the fourth vertex and teaching emerging from the interactions 

among all four vertices (a modification of the Olive & Makar tetrahedron shown in Figure 1 

above). Figure 3 illustrates Lee’s model for the focus of her dissertation study. 

 

Figure 3: Lee’s model for the focus of her study (from p. 23) 

 

The focus of her study is represented in Figure 3 by the double arrowed box containing 

the question mark. Thus, the study focused on the ways in which the experiences represented by 
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the pyramid on the left related to the observed and perceived aspects of the teaching situation 

represented by the tetrahedron on the right.  I consider Lee’s model as one possible answer to the 

plea that Drijvers et al (2009) made for the development of integrative theoretical frameworks 

that allow for the articulation of different theoretical perspectives.  

Complexity Theory 

Davis and Simmt (2003) applied a theoretical framework from complexity science to the 

teaching and learning of mathematics, promoting the shift away from mathematics as content 

towards the emergence of a mathematical community as a learning system.  They proposed five 

conditions as necessary for this emergence of a learning system: 

1. Internal diversity: but not the kind of diversity achieved by structured group work or other 

formal classroom organization strategies, because ―diversity cannot be assigned or 

legislated, it must be assumed – and it must be flexible‖ (Davis & Simmt, 2003, p. 149) 

2. Redundancy: which provides the necessary degree of sameness to allow people to interact 

while compensating for each other’s weaknesses 

3. Distributed control: acknowledging that the locus of learning is in the collective rather than 

the individual 

4. Organized randomness: establishing the enabling constraints necessary for generative 

activity 

5. Neighbour interactions: providing sufficient density of interactions between agents to open 

up new conceptual possibilities (from Goos & Soury-Lavergne, 2009, p. 320) 

Margaret Sinclair examined three different mathematical activities that incorporated the use of 

technology with respect to the five conditions above (Goos & Soury-Lavergne, 2009). The only 

one of the three tasks that met all the conditions for the emergence of a learning community was 

an independent study by her students that made use of a variety of technological applications.  

Davis and Simmt (2003) argue that ―emergent events cannot be caused, but they might be 

occasioned‖ (p. 147). Goos and Soury-Lavergne (2009) point out that: 

The difference here is between tasks that are prescriptive (specifying what is permitted; 

everything else is forbidden) versus proscriptive (specifying what is forbidden; everything else is 

allowed); in other words, emergence requires enabling constraints. (p. 320) 

Sinclair’s successful task was a proscriptive rather than prescriptive task.  
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While Goos and Soury-Lavergne were looking at Complexity Theory as a suitable theory for 

examining the teacher’s role in technology integration in the classroom, I see it as being more 

broadly applicable to learning situations outside the classroom, especially to on-line communities 

of practice and web-based multi-player gaming scenarios.  

Research Methodologies for Studying Technology Integration 

Appropriate methodology for any research study depends primarily on the research 

question to be investigated and the theoretical framework within which the research is being 

conducted.  I look with great skepticism on studies that purport to test the ―effect of technology 

on student learning‖ by trying to set up experimental-control designs that are supposed to 

―isolate‖ technology as a measurable variable in the teaching-learning situation.  As stated above 

by Kathy Heid (2005) ―One needs to be careful not to give the impression that technology itself 

makes the difference in teaching and learning. It is, of course, not the technology that makes the 

difference, but rather how it is used and by whom.‖ (p. 348)  

The list of questions I posed in my introduction suggest a variety of methodologies that 

might be used in attempting to address these questions.  

Learning: From a constructivist perspective, research related to how and what students learn 

through use of technology should aim to build models of ―epistemic students‖ (Steffe, 2010a) 

that would be useful for teachers, parents, software designers, designers of learning 

environments and policy makers.  As Steffe points out in his plenary paper for the WISDOM
e
 

conference, the researcher needs to be engaged with the students in a teaching-learning situation 

in order to build second-order models of students’ ways and means of operating when engaged in 

challenging mathematical tasks with the aid of technology.   

Teaching: Research investigating how and what teachers teach using technology has mainly 

focused on the teacher in the classroom, using observational methodologies derived from 

ethnography.  Goos and Soury-Lavergne (2009) make the argument that: 

(1) teacher characteristics (their mathematical and pedagogical knowledge, beliefs and attitudes, 

skill and comfort in using digital technologies), (2) institutional contexts (access to resources, 

policy pressures, curriculum change), and (3) professional learning and development influence 

the integration of digital technologies into mathematics teaching. (p. 327) 
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This broad view of the influences on teaching with technology requires methodologies that go 

beyond observation.  Institutional analysis, belief questionnaires, in-depth interviews, reflective 

journaling, and video portfolios can all contribute to the study of teaching with technology. 

 Curriculum: Determining what mathematics can and should be accessible through the use of 

technology (and thus included in curriculum recommendations) should be a by-product of the 

studies on learning and teaching. Historically, this has not been the case.  Rather, curriculum 

development and research has proceeded from an analysis of the structure of mathematics as 

perceived by adult mathematicians (see Steffe, 2010a for the deficiencies and dangers of this 

approach).   

Design of Technology: Research on how the specific interface design of a technology impacts its 

use is critical for understanding the ways in which humans interact with the technology.  

Nicholas Jackiw, the designer of the Geometer’s Sketchpad makes the following point: 

 [D]esign certainly acts as the first doorway and first doorkeeper to any deeper curricular or 

epistemological innovation an educational technology might offer. For it is not at the structural level, 

but rather on the surface—at the designed interface—that users interact with technologies; that 

meanings are negotiated; that cognitive, psychological, educational, and social transformation may, or 

may not, occur. (Butler, Jackiw, Laborde, Lagrange & Yerushalmy, 2009, p. 432) 

Jackiw suggests methodologies from the recent field of human computer interaction, and within 

this field, the study of interaction design, focuses precisely on the ways ―in which software 

signifiers are consumed by users, and on how users’ conceptual models of technology artifacts 

grow and change in response to interaction.‖ (Butler et al. p. 433) 

Use of technology: Investigating how the different uses of technology affect learning and 

teaching outcomes should also be a focus of the research on learning and teaching with 

technology, as well as a concern of the design research.  Methodologies that focus on how the 

technology is used, by students and teachers, and not just whether it is used or not, are essential 

for understanding any affects on outcomes. Instrumentation theory provides an appropriate 

theoretical framework for investigating how technology is used and shaped by that use. 

New Media for learning: New networking and social interaction technologies offer new media 

for learning both inside and outside the classroom. Hoyles et al. (2009) pose the following 

questions regarding these new interactive media: 
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 What is the potential for creating virtual communities for mathematics learning and 

permitting communication between individuals from different educational settings?  

 What is the potential contribution to mathematics learning of different levels of 

interactivity and different modalities of interaction, and how might this potential be 

realized? 

 What is special about the potential of collaborative study of mathematics whilst 

physically separated, and how might this potential be harnessed so as to support 

mathematics learning? (p.440) 

The media themselves offer new methodologies for investigating such questions.  Because 

these interactions take place in a digital medium, they can be easily recorded or catalogued for 

many purposes.  Indeed, this is already happening with our use of credit and debit cards and the 

electronic scanning of all of our purchases.  Every single item we purchase from the grocery 

store adds to our profile in the corporate database, informing the grocery chain of our specific 

preferences and using this information to focus promotional coupons and email messages 

specifically for us.  Students’ interactions in a digital learning (or gaming) medium could also be 

recorded and cataloged in ways that could provide the researcher with data for rich analyses of 

learning trajectories, modes of communication and collaboration, the emergence of different 

problem solving strategies, as well as patterns of actual use.  Semiotic mediation and Complexity 

Theory could provide appropriate frameworks for such analyses.  Also Shaffer’s (2006) theory of 

epistemic frames that characterize the situated understandings, effective social practices, 

powerful identities, shared values, and ways of thinking of important communities of practice 

can be a useful framework for analyzing these digital records.  In his paper on video games and 

the future of learning, Shaffer et al. (2008) make the following point: 

To build such games requires understanding how practitioners develop their ways of thinking and 

acting. Such understanding is uncovered through epistemographies of practice: detailed 

ethnographic studies of how the epistemic frame of a community of practice is developed by new 

members. That is more work than is currently invested in most ―educational‖ video games. But 

the payoff is that such work can become the basis for an alternative educational model. (p. 12) 

New Media for teaching: New networking and social interaction technologies offer new media 

for teaching both inside and outside the classroom. Research on how and what kind of teaching 
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may take place in these new media has focused primarily on distance learning techniques.  When 

distance learning was first introduced, it mimicked the face-to-face lecture modality and was 

seen as a poor substitute for the real thing. Distance learning is rapidly evolving into a dynamic 

medium for engaging students at a distance, in both synchronous and asynchronous modes.  

Social networking platforms, such as ―Second Life‖ are being used by universities to create 

virtual learning communities in which students and teachers interact via on-screen avatars.  

Undertaking Shaffer’s epistemographies of practice in such virtual teaching and learning 

communities could help us understand how teaching is transformed in these new media. 

Example Implementations of Technology in Mathematics Education 
 

In this section of the paper I will attempt to briefly describe some examples of technology 

integration in mathematics education that address several of the questions I posed in the 

introduction. 

The Dynamic Number Project 

This project will eventually address almost all of the questions I have posed in this paper.  Key 

Technologies (developers of Dynamic Geometry and Dynamic Statistics software) have been 

awarded a research and development grant from the National Science Foundation to develop 

Dynamic Number (DN) tools for students and teachers in elementary and middle school. In the 

NSF proposal for the project, Scher and Rasmussen (2009) make the following points: 

Currently, Dynamic Number ideas only exist in highly controlled, narrowly content-focused 

―applet‖- like incarnations. Alas, these interactive models are useful only at the rarest triple 

concurrence of technological availability, curricular relevance, and student need. Furthermore, 

they are capable of being built only by those equally rare individuals who combine curriculum 

development expertise with sufficient technological prowess and appropriate professional 

contexts to pursue such work. If, instead, these ideas became infrastructure in a general-purpose 

mathematical tool accessible not only to curriculum developers but to students and teachers, the 

educational, technological, and social school conditions are ripe for Dynamic Number 

technology to have broad and transformative impact, at a national scale, on students’ 

mathematical understanding and performance relating to core number constructs, 

elementary number theory, and early algebra ideas across the grades 2–8 curriculum. (p. 2 

emphasis in the original)  
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Actualizing this potential is the goal of the Dynamic Number Project.  During the first year of the 

project, 19 teachers in grades 2 through 8 were recruited across the USA and were provided with 

six weeks of on-line training in the use of The Geometer’s Sketchpad (GSP 5) and initial 

prototypes of Dynamic Number tools constructed in GSP.  In the summer of 2010, four more 

teachers in Croatia joined the project.  My role in the project is as director of the evaluation 

component.  Along with Les Steffe and a doctoral student, Doug Griffin at the University of 

Georgia, we have participated in the on-line community established for on-going communication 

among the participating teachers and developers, reviewed the initial prototype tools and 

provided feedback to the developers on possible ways to improve or adapt these prototypes, and 

conducted interviews with the five teachers in Georgia.  In the interview that Doug Griffin 

conducted with one of the Georgia teachers, following the six-week training, the teacher reported 

that she had already used a couple of the dynamic number activities with her fourth grade 

students. The following is an excerpt from the verbatim transcript of that interview: 

I’ve done two, I used the same program. I did the dividing and subdividing fractions on a number line 

sketch with my children. Just to introduce them to what is ½? What is 1/3? I found it VERY 

interesting because I felt like I taught several things in conjunction and didn’t just address what does a 

fraction look like. They were able to…my intent was to teach equivalent fractions. But even more 

than that, one of the most beneficial things I thought from the lesson was, Sketchpad only has up to 

1/6, so we had to make 1/10 and my kids had to develop that mathematical thinking: How can I make 

1/10 when I only have ½, 1/3, ¼, 1/5, and 1/6? And 1/9 was the most interesting to create, because all 

of my kids wanted to start with ½. They told me ―You need to split the number line in half‖ and then 

they would say ―Ok, now use fourths up to the half mark and then use fifths up until the end‖. Then 

they would say ―No, that doesn’t work because fractions have to be equal‖. So then I said ―OK let’s 

start over‖! Then they said ―Let’s use the ½, the 1/3, and the 1/6‖ (laughter). I was able to actually 

show that to them, it was a visual representation of what they were saying. And that taught fractions 

how to be equal better than anything I think, because then they would say ―Let’s just use 1/6 and 1/3 

instead of splitting it in half‖. So I would drag 1/6 about ¾ of the way, then I would take 1/3 and take 

it about halfway, not even complete the number line, and they would say ―No you can’t do that either 

because they are still not equal‖. Finally they developed that it was 1/3 and 1/3 and 1/3, but it took a 

while, and I think that was a very………..insightful moment for them.  

[In the presentation, I will demonstrate the Dividing and Sub-dividing activity that the teacher 

described in this transcript as well as other DN models.]  The teacher’s enthusiasm for use of this 

DN tool, if only in a demonstration mode, and the skillful way in which she used it to provoke 
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perturbations in the students’ reasoning about fractions, are early indications of possible changes 

in teaching and learning that we are currently analyzing and documenting in this project. 

During the second year of the project we have been videotaping the teachers’ class 

lessons in which they make use of the Dynamic Number (DN) tools and also conducting 

interviews with individuals and small groups of students.  In these interviews the researchers 

used DN tools with students to explore students’ conceptions of units, measurement, fractions 

and variables.  Preliminary results have been presented at the annual conference of NCTM in the 

USA and at the 35th Annual Conference of the International Group for the Psychology of 

Mathematics Education (PME 35) in Ankara, Turkey (Olive, 2011).  

This year, the Dynamic Number project is testing interactive GSP sketches for children to 

explore number concepts at home or in school, using the new Sketchpad Explorer that was 

recently developed by Key Technologies for exploring GSP sketches on the iPad.  Initial use of 

the first interactive sketch with children in third and fourth grades indicates that it is a powerful 

motivator for engendering children’s construction or recall of multiplication facts.  In my 

presentation I will share a short video of two fourth graders playing with this first sketch (Hop 

Along) on an iPad. 

The DN Project is based on well-established theoretical frameworks, integrating the 

Elkonin-Davydov (Elkonin and Davydov, 1966; Davydov et al., 1999) approach to elementary 

mathematics with Steffe’s notion of a ―connected number‖ (a connected but segmented linear 

unit). Steffe’s connected number constitutes a step in unifying discrete and continuous 

quantitative schemes because it opens the possibility that a connected but segmented unit can be 

a situation of the child's counting scheme. Steffe’s (2010b) description of the construction of a 

―Connected Number Sequence‖ provides strong support for the Dynamic Number approach: 

The construction of a connected number sequence is an initial step in the construction of 

measurement as well as an important step that integrates discrete and continuous 

quantity. A child at this level has constructed an awareness of indefinite length as well as 

of indefinite numerosity as quantitative properties of a connected number. Hence, I 

regard both an awareness of length and an awareness of numerosity as extensive 

quantities, which generalizes the concept not only across the discrete and the continuous, 

but also across the schemes that constitute measurement and number. (p. 56) 

The evaluation component of the project will feed into the design-research component on a 

cyclical basis, thus the design of the DN tools will be shaped by our work with teachers and 
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students as they make use of the prototypes.  We anticipate uncovering several cycles of 

instrumental genesis through this process. 

Dynamic Geometry Environments 

In a dynamic geometry environment (DGE), geometric objects are constrained by their 

geometric properties (unlike paper-and-pencil sketches that can be distorted to fit expectations) 

similar to how physical objects are constrained by properties of physics when manipulated 

within the world. By observing properties of invariance simultaneously with manipulation of the 

object, there is potential to bridge the gap between experimental and theoretical mathematics as 

well as the transition from conjecturing to formalizing. As Laborde et al. (2006) state, DGE ―has 

provided access to mathematical ideas by allowing the bypassing of formal representation and 

access to dynamic graphing which is particularly important for the learning of geometry. … Just 

as digital technology provides means to by-pass formalism, it may also provide the means to 

transform the way formalism is put to use by students.‖ (p. 284) 

Dynamic geometry environments have been available for more than 20 years, and much 

has been written about them; many research efforts have investigated their use with students in 

classrooms from kindergarten to college mathematics and mathematics education courses.  The 

17
th

 ICMI Study volume (Hoyles & Lagrange, 2009) has no less than 50 listings for DGE in its 

index (p. 488) and three of those 50 are page-ranges that bring the total to 68 pages in which 

DGEs are discussed.  I shall not attempt to review this massive corpus of data in this paper but 

refer the reader to this published volume for references to important research on DGEs. 

The continued development of DGEs and the relative success in their widespread use in 

classrooms around the world provide lessons for future design of educational technology.  

Jackiw (2009) makes the following comment regarding the importance of design in the eventual 

influence of technology on mathematics education: 

To the degree our work in mathematics technology aspires to educational influence at significant 

scale, rather than just to the pleasure of small, pre-qualified technological elites, we have first to 

admit that design matters—that specific design matters, specifically—and, second, to develop a 

much richer discourse for design analysis. (p. 432) 

One of the most challenging design problems with respect to dynamic geometry is that of 

interacting on a 2-D surface to manipulate representations of 3-D shapes.  Currently, only one of 

the major DGE groups has addressed this challenge with the development of Cabri 3D.  Jean-
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Marie Laborde (2009) indicates that the challenge is to find the right metaphors to help people 

reinvest their existing body of  knowledge in order that they feel familiar with the new 

environment: 

In Cabri 3D we decided to use conic perspective as [the] default perspective. Precisely, objects 

are represented as they would be seen in the hands of the user at a distance of 40 or 50 cm from 

his/her eyes. We call this perspective ―natural‖; it is very different from the perspective often 

used by 3D software –like graphical spreadsheets- where the perspective is exaggerated for 

questionable aesthetic reasons.  

 Since 3D movements are to be performed by way of a 2D pointing device, non-trivial 

decisions have also to be taken relatively to how a user can drive points in space. He or she must 

feel ―at home‖ while moving objects within the scene. Most of the pointing devices are 2D 

devices… For 3D one could think of 3D pointing device; they exist and are still quite expensive; 

one could also think of user full immersion in a 3D virtual reality environment. To keep 

technology affordable and widely available, we decided for Cabri 3D to stick with ordinary 2D 

pointing devices and make use of the old typewriter metaphor: pressing the Shift key actually 

causes a vertical motion of the carriage. In Cabri 3D moving the mouse normally produces a 

movement of the dragged object in a horizontal plane while pressing the Shift key changes this 

into a movement along the vertical axis. (p. 435) 

In my own initial explorations with Cabri 3D I did not find this last metaphor (the typewriter 

shift key to move vertically in space) an intuitive way of creating 3D figures on the 2D Cabri 

screen.  Not being aware of this design feature (I didn’t read the available on-screen help menu 

for manipulations before exploring!) I struggled for almost an hour trying to create a pyramid but 

always ending up with a quadrilateral in the represented plane.  My intuition was to move the 

cursor vertically above the plane to create the vertex of the pyramid. Unfortunately, this 

seemingly vertical motion was interpreted by Cabri 3D as motion in the plane away from me.  

The constraint I was faced with (and also the designers – see above quote) was how to indicate 

motion in three dimensions with a 2D pointing device.  Perhaps we should be looking to the 

gaming world for 3D motion controllers such as the Nintendo Wii controller as a possibly 

affordable 3D motion device for use with 3D dynamic geometry environments? 

Scaling Up Integration of Technology: The SimCalc project 

In the section on Research Methodologies above, I suggested that experimental-control 

designs were not appropriate to address most of the questions I have posed in this paper. 
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However, there is a place (and time) for such research when the technology is at a point in its 

development and implementation where large-scale, faithful adoption is possible. An 

implementation of the SimCalc simulation tools, together with the MathWorlds curriculum has 

been recently tested with more than a thousand middle school students and their teachers in the 

state of Texas (Roschelle, Tatar, Schechtman, Hegedus, Hopkins, Knudson & Stroter, 2007). 

Developed by Jim Kaput and colleagues at the University of Massachussetts-Dartmouth over the 

past 15 years, the SimCalc software and MathWorlds curriculum have undergone rigorous cycles 

of development-field testing-revisions. According to Roschelle et al.,  

SimCalc software engages students in linking visual forms (graphs and simulated 

motions) to linguistic forms (algebraic symbols and narrative stories of motion) in a 

highly interactive, expressive context. SimCalc curriculum leverages the cognitive 

potential of the technology to develop multiple, interrelated mathematical fluencies, 

including both procedural skill and conceptual understanding (p. 2). 

In terms of the theoretical frameworks outlined above, the SimCalc software acts as a 

semiotic mediator, linking several different semiotic systems to develop both procedural skills 

and conceptual understandings. The results of this extensive implementation of the SimCalc 

MathWorlds curriculum do, indeed, indicate the cognitive potential of the technology, achieving 

what has been termed the ―gold standard‖ for experimental research, both in design and effects.  

A highly statistically significant main effect (p<0.0001) was found between control and 

treatment classrooms on measures of students’ conceptions of rate and proportional reasoning 

after implementation of a three-week unit on rate and proportions.  Moreover, the gains for the 

treatment group were consistent across SES, race and gender groups. Based on these results, the 

researchers claim the following: 

(a) that the SimCalc approach was effective in a wide variety of Texas classrooms,  

(b) that teachers successfully used these materials with a modest investment in training, and  

(c) that student learning gains were robust despite variation in gender, ethnicity, poverty, and 

prior achievement. (Roschelle et al., 2007, p. 6) 

The researchers make the important point that the gains were accomplished by the treatment 

students on the more complex items dealing with proportionality and rate, whereas all students 

made similar gains on the simpler items. 

Jim Kaput (1998) pointed out that dynamic, interactive software like SimCalc opens up 
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the Mathematics of Change & Variation (MCV) to students who have traditionally been shut out 

by ―the long set of algebraic prerequisites for some kind of formal Calculus, this despite the fact 

that the bulk of the core curriculum can be regarded as preparation for Calculus‖ (p. 7). Kaput 

goes on to state: 

…we can see that while large amounts of curricular capital are invested in teaching 

numerical, geometric and algebraic ideas and computational techniques in order that the 

formal symbolic techniques of Calculus might be learned, the ways of thinking at the 

heart of Calculus, including and especially those associated with the Fundamental 

Theorem, do not require those formal algebraic techniques to be usefully learned. Indeed, 

by approaching the rates-totals connections first with constant and piecewise constant 

rates (and hence linear and piecewise linear totals), and then gradually building the kinds 

of variation, we have seen the underlying relations of the Fundamental Theorem become 

obvious to middle school students. (p. 7) 

Beginning with the Dynamic Number tools in elementary school and progressing on to 

the SimCalc--MathWorlds activities in middle school could be a very powerful combination for 

students of all ages to engage in the Mathematics of Change and Variation.  Coordination of 

design and curriculum development between these two projects could be very productive.  

 

Examples of New Media for Teaching and Learning 

In this section I provide just a few examples of the new media with which I am 

personally familiar and provide references (where possible) to research that is being conducted 

or needs to be conducted both within and on these new media.  These examples are by no-means 

exhaustive. 

Logo and Robotics 

A tremendous quantity of research has been conducted on young children’s interactions 

with the Logo programming language, first popularized by Seymour Papert in his ground-

breaking book, Mindstorms (Papert, 1980) on young children and technology.  Clements and 

Sarama (2005) provide an overview of this research and the overwhelming evidence that young 

children do gain insights into spatial relationships, properties of geometric shapes, and linear and 

angle measurement concepts through their programming activities.  Clements and Sarama raise 
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the question ―Why not just draw on paper?‖ rather than struggle to command an on-screen turtle 

to draw a shape.  They answer with the following: 

First, drawing a geometric shape on paper, for example, is for most people a motor procedure.  In 

creating a Logo procedure to draw the shape, however, children must analyze the visual aspects 

of the shape and their movements in drawing it, thus requiring them to reflect on how the parts of 

shapes are put together.  Writing a series of Logo commands, or a procedure, to draw a shape 

―allows, or obliges, the child to externalize intuitive expectations. When the intuition is translated 

into a program it becomes more obtrusive and more accessible to reflection‖ (Papert, 1980, p. 

145) (p. 57) 

Clements and Sarama (2005) site many studies from the 1980’s through the year 2001 that 

indicate that this externalization and reflection does happen. 

The Turtle Geometry of Logo (Papert, 1970) was initially developed as a control 

language for a physical, dome-shaped robot (dubbed the ―turtle‖).  The expense of the physical 

device and control mechanisms in the late 1970’s and early 1980’s made the physical robot turtle 

prohibitive as a classroom-based learning tool.  Mass production of similar control systems with 

small robotic devices for the toy market, have now made the use of robotics a possibility again in 

K-12 classrooms.  Programming robotic vehicles to travel around obstacle courses, or navigate a 

specific route, while providing a fun, game-like context, has the potential for rich mathematical 

learning. I had the good fortune to visit a second grade classroom in Taiwan in May where 

children were exploring properties of squares, rectangles and triangles by planning a series of 

Logo-like commands for a physical Lego® robot to trace out the boundaries of these different 

shapes.  During the presentation I shall show video excerpts from that visit that illustrate the 

points that Clements and Sarama (2005) make concerning the influence on children’s 

communication, collaboration, planning and reflective activities that such programming can have 

under the guidance of a teacher who has planned a well structured sequence of activities.  A 

group at the National Pingtung University of Education in Taiwan, headed by Ching-Hua Chien, 

is collecting video data of the Lego-Logo classroom activities with the goal of analyzing both the 

teaching and learning that is enabled through such activities. 

Single & Multi-Player web-based gaming environments 

Shaffer et al.  (2008) urge the educational research community to look at video and web-

based games, 
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not because games that are currently available are going to replace schools as we know 

them any time soon, but because they give a glimpse of how we might create new and 

more powerful ways to learn in schools, communities, and workplaces—new ways to 

learn for a new information age. (p. 2) 

Shaffer et al. point out that ―the virtual worlds of games are powerful because they make it 

possible to develop situated understanding.‖ (p. 5 italics in the original) They make the point 

that students will learn from video games and their involvement in the web-based gaming 

environments.  We need to find out what they are learning and how.  We also need to be 

concerned about who is creating these games and whether or not they are based on sound 

theories of learning and socially conscious educational practices. Currently there is a large gulf 

between educators who try to design fun learning games and gamers who try to add learning in 

fun games.  Neither group has met with much success.  What is needed is a genuine 

collaboration between these two groups.  I provide the following examples of multi-player 

gaming environments from these two camps.  The first is a new initiative by NCTM called 

Calculation Nation™: http://calculationnation.nctm.org/, the second is Disney’s Club Penguin: 

http://www.clubpenguin.com/ 

NCTM’s Calculation Nation is a web-based, single or multi-player gaming environment 

that:  

uses the power of the Web to let students challenge opponents from anywhere in the 

world. At the same time, students are able to challenge themselves by investigating 

significant mathematical content and practicing fundamental skills. The element of 

competition adds an extra layer of excitement (obtained from the web page). 

While I did find the games both challenging and sort of fun, I found only 3 players on-line when 

I logged in (compare this to Club Penguin, below). I have played Slam Ball and Prime Time. 

 Both games are mathematically challenging and captivating. They don't have any context or 

story-line, but I was certainly involved in thinking about the mathematics and trying to beat the 

computer.  Unfortunately, when I tried "Challenging Others" to Slam Ball no one was on-line!  

Calculation Nation is free to join.  My on-line name is ―ProfJohn‖ if anyone wants to challenge 

me to a game of Slam Ball! 

Disney’s Club Penguin is an on-line, virtual world for young children who interact with 

each other and the world via their own penguin avatar. More than 20 million children world-wide 

currently play in Club Penguin.  In the guise of their penguin avatars they can visit different 

http://calculationnation.nctm.org/
http://www.clubpenguin.com/
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locales and engage in social activities (like dancing, playing hockey or throwing snowballs) and 

competitive tasks and games.  Each locale has different games or tasks in which players can 

choose to engage.  Just one of those games, Card Jitsu (a variation on ―paper-scissors-rock‖) 

purports to attract 24 million players PER MONTH! With such vast numbers of players, we have 

an amazing data source to investigate the patterns of reasoning and strategies that children 

develop to progress in the levels of this game.  

The original founder of Club Penguin, Lane Merrifield now oversees development of all 

Disney’s online games.  A recent report in the Times of London (Mostrous, July 17, 2010) 

indicated that in two months’ time (i.e. September, 2010) players in Club Penguin will be 

rewarded for completing games designed to test their verbal and mathematical skills. According 

to Merrifield ―It’s going to take learning within a virtual space to a whole new level.‖  He likens 

the new Club Penguin to Public Broadcasting’s Sesame Street with the added attraction of 

personal interactivity through the on-line virtual world.  He is determined to keep things fun: 

―One of the mandates I gave was that there’s no chocolate-covered broccoli. If we’re going to do 

learning, [we have to] recognize that learning can just be chocolate.‖  I believe, that as concerned 

educators, we have a responsibility to guide the production of such ―learning candy‖ through the 

application of both sound learning theory and systemic research. 

 

New media for face-to-face collaborative problem solving 

While the world-wide-web provides a medium for virtual collaboration, there are new 

media emerging for real-life collaborative problem solving, both in-school and out-of-school.  In 

the classroom, the new SMART Table offers young children the opportunity to work together to 

solve virtual puzzles (such as Tangrams) and work collaboratively to generate answers using the 

multi-touch technology.  For example, simple arithmetic computational drill can become an 

exciting cooperative effort when the answer to 18+9 has to be represented by the correct number 

of fingers touching the table at the same time – how many pairs of hands are needed?  The 

following YouTube video shows children’s use of and reactions to this new technology: 

http://www.youtube.com/watch?v=ZU-CYeiKmP4&NR=1  

New interconnectivity systems such as the TI-Navigator and the SMART response 

systems offer possibilities for students to send their solutions to a problem to the teacher’s 

computer for classroom display and comparison.  These systems can be used to gather data, 

http://www.youtube.com/watch?v=ZU-CYeiKmP4&NR=1
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compare solutions, and investigate different possible solutions to the same problem.  They also 

provide the teacher with real-time access to individual students’ solutions so that individual 

problems can be monitored and dealt with as they occur. Trouche and Hivon (2009) raise the 

following question concerning classroom connectivity technology: ―What are relationships 

between what we call orchestrations (Trouche 2004; Drijvers & Trouche 2008) – the intentional 

organization by the teacher of the various tools available in a learning environment, and 

creativity of the learners who form part in this situation?‖ (pp. 444-445)  Trouche and Hivon 

(2009) studied the integration of the TI-Navigator system into the French school system at 10
th

 

grade. They concluded that work with the system fostered ―an emergent real community of 

practice (Wenger, 1998) in the classroom in which we could distinguish three fundamental 

aspects, participation, reification, and the existence of shared resources.‖ (p. 447) They also 

reported, however, that the work of the teachers became much more complex as they struggled to 

manage both students’ tools and the collective tool (the calculator network).  The researchers 

intend to undertake a deeper analysis of students’ learning processes in such environments when 

both teachers and students are more used to working in them. 

Outside of school, a new kind of collaborative exploration medium is being created using 

sophisticated digital video and touch technology.  Chronis Kynigos, director of the Educational 

Technology Lab at the University of Athens in Greece is involved in the creation of a new 

Exploratorium called Polymechanon (kinesthetic cooperation).  Polymechanon opened its doors 

to groups of school children just over two years ago.  I had the opportunity to visit the canvas-

covered adventure playground in Athens in July 2009.  I watched in awe as young children 

excitedly moved their bodies to cooperatively engage in the game situations.  I was also thrilled 

to participate in the games myself.  The following YouTube video provides a glimpse of this 

excitement: http://www.youtube.com/watch?v=d8AJwADKd90. It is narrated by Chronis 

Kynigos in Greek but has English subtitles.  Kynigos concludes with the following: 

In Polymechanon the goal is to give out the message that learning is something absolutely natural.  

It doesn’t need to be tiring, boring or even disconnected from our personal interests and wishes.  

It could, on the contrary, be a delight or something useful, happening with our friends…or the 

ones we made when we visit Polymechanon. 

What needs to be investigated is the nature of this ―natural‖ learning. What are the children 

learning from these kinesthetic cooperative activities? And how are they learning? 

http://www.youtube.com/watch?v=d8AJwADKd90


Olive: KSESM Keynote Address, page 23 

 

Concluding Remarks 

Cathy Adams (2006) wrote: ―The technological milieu is shaping substantially—

insinuating itself, habituating us, and simultaneously reinterpreting—how we act in and perceive 

the world.‖ (p. 3)  My attempt in this paper and presentation has been to indicate, through 

specific examples, the broad range of questions that this technological milieu raises for 

mathematics education.  I have also attempted to give a glimpse of the range of new 

technological tools and environments that can have a profound affect on how and what we learn 

and teach.  This is certainly an exciting field of research, involving professionals from many 

fields and demands a collaborative research agenda.  We must be cognizant, however, of the 

theoretical frameworks that different researchers from different fields employ in their work. 

Collaboration requires the use of integrative frameworks that can take into account the different 

perspectives of the various disciplines involved.  I have offered one such framework in this 

paper. 
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