“Unnatural How Natural It Was”: Using a Performance Task and Simulated Classroom for Preservice Secondary Teachers to Practice Engaging Student Avatars in Scientific Argumentation

Jamie N. Mikeska1, Calli Shekell1, Jennifer Dix2, and Pamela S. Lottero-Perdue2

1ETS
2Towson University

Author Note

Correspondence concerning this article should be addressed to Jamie Mikeska, Educational Testing Service, 660 Rosedale Rd., Princeton, NJ 08541. E-mail: jmikeska@ets.org. This grant was funded by the National Science Foundation (grant #2037983). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We are grateful for the science task team members who supported the development of this secondary science task and for the preservice teachers who piloted and provided their feedback on the task.
Abstract

Facilitating discussions is a key approach that science teachers use to engage students in scientific argumentation. However, learning how to facilitate argumentation-focused discussions is an ambitious teaching practice that can be difficult to learn how to do well, especially for preservice teachers (PSTs) who typically have limited opportunities to tryout and refine this teaching practice. This study examines secondary PSTs’ perceptions and engagement with a science performance task—used within an online, simulated classroom consisting of five middle school student avatars—to practice this ambitious teaching practice. Findings showed that the PSTs had a strong understanding of the discussion’s primary goal and perceived the task components to be easy to understand, useful in helping them prepare for the simulated discussion, and an authentic representation of what middle school students would say and do. In addition, while the PSTs attended to similar content and pedagogical features within their facilitated discussion, they varied in their ability to successfully facilitate the discussion. This study adds to the growing literature on innovative, technology-based solutions for supporting teacher learning and points to one productive approach that can be incorporated within science teacher education as an approximation of practice of this ambitious teaching practice.
Challenge within Science Teacher Education

Engaging students in argument from evidence is one of the science and engineering practices identified in the *Next Generation Science Standards* (NGSS) as important for student learning (NGSS Lead States, 2013). Scientific argumentation involves students in generating and defending scientific claims using evidence-based reasoning as well as comparing and critiquing one another’s ideas as students work to persuade one another and build consensus (Berland & Reiser, 2009; Osborne et al., 2016). Facilitating discussions is a key approach that science teachers can use to engage students in this practice (Cartier et al., 2013; Simon & Richardson, 2009). Yet, learning how to facilitate discussions that engage K-12 students in productive scientific argumentation is an ambitious teaching practice that is difficult to learn how to do well and one that preservice teachers (PSTs) tend to have limited opportunities to tryout and refine.

Research findings have illustrated both the successes and challenges of engaging students productively in scientific argumentation and have identified many factors that can impact teachers’ abilities to engage their students in scientific argumentation, such as teachers’ knowledge about argumentation, their access to high-quality curriculum resources, and their perspectives about its importance (Colley & Windschitl, 2016; McNeill et al., 2017; McNeill et al., 2016; Osborne et al., 2013; Sadler, 2006). Within the last decade, additional research has explored various approaches that can be used to help teachers learn how to facilitate scientific argumentation (Marco-Bujosa et al., 2017; McNeill et al., 2016; McNeill et al., 2017; Osborne et al., 2013; Sadler, 2006). Yet, findings have shown mixed results, suggesting that work to expand the available approaches would be an important contribution to science teacher education.

This study’s primary focus was to examine how one performance task coupled with Mursion’s® online, simulated classroom consisting of five middle school student avatars (Figure 1) could be used to provide opportunities for PSTs to practice one ambitious science teaching
practice: facilitating argumentation-focused discussions. In this study, we investigated the PSTs’ perceptions and use of this innovative tool to engage them in an approximation of practice. The study targets the following research questions (RQs): (1) How do the PSTs perceive the clarity, authenticity, usefulness, and discussion goal of the performance task? and (2) How well and in what ways do the PSTs facilitate argumentation-focused science discussions within the simulated classroom? Findings can provide answers about the potential of such tools to productively complement other instructional approaches when integrated within PST preparation programs.

Insert Figure 1 about here

We begin with a brief description of the theoretical framework undergirding this study – a practice-based theory of teacher learning. We then provide background in two research areas to contextualize the importance of this study – research examining students’ engagement in and teachers’ facilitation of scientific argumentation and research examining the use of technologically mediated simulations to support teacher learning. After that, we move onto a discussion of the study’s context, methods, and data analysis approach. We end by sharing findings addressing each research question and implications for how such innovative technology tools could be leveraged to support teacher learning within teacher education contexts.

Theoretical Framework: Practice-Based Theory of Teacher Learning

Practice-based teacher education has been lauded as one solution to address the widespread challenge of providing substantive, frequent, and meaningful opportunities for PSTs to rehearse key aspects of complex instructional practice (Ball & Forzani, 2009; Forzani, 2014; Francis et al., 2018; Grossman, Hammerness et al., 2009; Lampert, 2009; Zeichner, 2012). A practice-based theory of teacher education argues that teacher learning is directly tied to opportunities for them to learn in and from their practice, with recent research illustrating that PSTs are more effective when their preparation provides opportunities for such practice (Francis
et al., 2018; Goodson, et al., 2019). As noted by Grossman & Compton et al. (2009), these learning opportunities can include a range of different pedagogies of practice, such as engaging PSTs in representing practice through the sharing of written cases, decomposing practice through analyzing video examples, or approximating practice in situations of reduced complexity.

Approximations of practice involve PSTs in trying out aspects of the work of teaching, such as practicing interpreting and eliciting student ideas or facilitating discussions, albeit in situations where they do not have to contend with the full complexity of instructional challenges (Grossman, Hammerness et al., 2009). In science education, face-to-face rehearsals have been one of the key approaches used to engage PSTs in approximations of practice. In these rehearsals, the role of the “student” is played by one or more adults – typically other PSTs, the teacher educator, or other trained adults – as the PST tries out a novel teaching practice (Arias & Davis, 2019; Benedict-Chambers, 2016; Benedict-Chambers & Aram, 2017; Benedict-Chambers et al., 2020; Davis et al., 2017; Masters, 2020).

More recently, the field has seen an increase in the use of digital practice spaces, including virtual classroom environments, to engage PSTs in rehearsals within science education (Bell, 2019; Lottero-Perdue et al., 2020; Mikeska & Howell, 2020; Straub et al., 2015). Yet, questions remain about how these types of innovative technology-based tools are perceived and if and how they can be used by PSTs to support their learning. This study explores how a performance task used within an online simulated classroom environment could be used to engage PSTs in approximating one ambitious science teaching practice: facilitating discussions that engage students in scientific argumentation.

Background

Learning How to Engage Students in Scientific Argumentation
Research has suggested that engaging students in scientific argumentation is important to support student learning. Opportunities for students to practice engaging in argumentative discourse has been linked to increased student engagement, understanding of disciplinary concepts and practices, and critical thinking and decision-making (Kuhn, 2010; McNeill et al., 2016; Osborne et al., 2013). Here, we define scientific argumentation as a process that involves students in two complementary aspects – argument construction and argument critique (Mikeska & Howell, 2020). Argument construction involves students in generating, defending, and refining scientific claims and using evidence-based reasoning to support and refute such claims. Argument critique involves students in comparing and critiquing scientific claims and using evidence-based reasoning to persuade one another and come to consensus about scientific explanations. Collectively these two aspects attend to the structural and dialogic components of argumentation that have been highlighted in the science educational literature (Gonzalez-Howard & McNeill, 2019; Grooms et al., 2018; Jimenez-Aleixandre & Erduran, 2008).

Within the last two decades, several research studies have examined how K-12 students engage in argumentative discourse in the context of science instruction and the varied factors that relate to the productive nature of this engagement (Colley & Windschitl, 2016; McNeill, 2011; McNeill et al., 2016; 2017). For example, studies have shown that K-12 students are capable of successfully engaging in key aspects of productive scientific argumentation including generating scientific claims, providing and probing for evidence-based reasoning to support scientific claims, critiquing others’ claims and evidence-based reasoning, and offering rebuttals and counter arguments. Studies have also shown that opportunities students have to engage in scientific argumentation can be impacted by their own and their teachers’ understanding of the key characteristics of scientific argumentation and beliefs about its importance; the curriculum materials that teachers use to guide their science instruction; and the ways in which teachers
frame the learning goals for their students during science discussions (Berland & Hammer, 2012; Katsh-Singer et al., 2016; McNeill & Krajcik, 2008; McNeill & Pimentel, 2010; Sampson & Blanchard, 2012). Another consistent finding across studies is that scientific argumentation is supported by having a supportive classroom setting where risk-taking and differences in perspectives are valued and encouraged (Berland & Reiser, 2011; Henderson et al., 2018).

While there are varied approaches to supporting students to engage in productive scientific argumentation, one approach that has been used widely across many informal and formal instructional contexts is the use of student-centered discussions (Cartier et al., 2013; National Research Council, 2011). Research has suggested that teachers need access to scaffolded and comprehensive supports, typically through professional development, to learn how to support students in productively engaging in scientific argumentation. For example, one recent study (Fishman et al., 2017; Osborne et al., 2019) developed and implemented a multi-year professional development program with in-service elementary teachers to support them in learning how to facilitate student-led argumentative discourse in science. Findings from their study indicated that teachers improved in their ability to promote student argumentative discourse and their students also showed an uptake in engaging in specific discourse moves. In another line of research (Marco-Bujosa et al., 2017; McNeill et al., 2016, 2018), a team of researchers and science teacher educators developed a suite of online resources, including video exemplars, lesson planning tools, and learning modules, to support teachers in learning how to provide their students with opportunities to engage in productive scientific argumentation. Study findings were also positive in nature with noted improvements to teachers’ self-efficacy, views about their students’ capabilities, and attention to student learning goals during lesson planning after using these multimedia resources.
However, other studies provide evidence of less positive outcomes, illustrating how this teaching practice can be difficult for teachers to learn how to do well. For example, in one study (Osborne et al., 2013) researchers engaged two lead teachers in learning about how to use various scientific argumentation activities in the classroom and then had those lead teachers work to train other teachers on how to integrate these activities into their own classrooms. The participating teachers did not consistently show improvement in their understanding of the science content or in their understanding of argumentation instruction. These results suggest that exploring new tools that could be used to support teacher learning of this ambitious teaching practice, especially tools that could be used to expedite and transform such learning experiences, would be a useful contribution to the field.

Using Technologically Mediated Simulations in Teacher Education

One way to enable PSTs to practice facilitating argumentation discussions is by using simulations. We use the following definition of simulations within teacher education from a synthesis of recent work by Mikeska, Howell, Dieker, and Hynes (2021):

Simulations are responsive learning spaces where preservice and in-service teachers can rehearse critical instructional practices or specific skills essential to the work of teaching in situations of reduced complexity. These learning spaces can target the interactive, in-the-moment, responsive work of teaching, such as eliciting student ideas or facilitating student-led discussion or the noninteractive components, such as planning, grading, providing written feedback on work, or interpreting student data. Simulations do not involve interactions with real students. Instead, they typically involve synchronous and human-driven interactions, where the participant interacts via a face-to-face format or through a technologically mediated environment with one or more adults who act as K-12 students. (p. 800)
In this study, we focus specifically on simulations that are technologically mediated, as opposed to those that involve, for example, peer-to-peer role play (e.g., Benedict Chambers, 2016).

There are multiple types of technologically mediated (or digital) simulations available for use in teacher education. Examples include Quest2Teach, Teacher Moments, Eliciting Learner Knowledge (ELK), simSchool, TeachLivE, and Mursion (Arici et al., 2016; Christensen et al., 2011; Thompson et al., 2019; Wang et al., 2021). It is beyond the scope of this paper to describe each of these. However, one important way to differentiate among these simulations is by whether they involve a teacher interacting with technology that is supported by a real-time “human in the loop” operating “behind” that interface. In what follows, we describe those that include a human in the loop since it is this type of simulation used in the present study.

These simulations are often referred to as mixed-reality simulations that utilize both a technological system and include a human in the loop. ELK, for example, is “a role-playing system that offers virtual sessions in which players can learn and practice discourse strategies on eliciting knowledge from conversational partners” (Wang et al., 2021, 2). One player plays the role of a student while the other a teacher. In this way, there are two humans in the loop, both of whom communicate via the online system interface by texting one another questions (teacher) and answers (student); thus, the players need not be in the same location to interact with one another. The goal of the teacher is to elicit ideas from the student; those “ideas” are included in the scenario that is shown to the player in the student role only. The teacher also receives information about what they are aiming to elicit. In a recent study, ELK was shown to have modest benefits with respect to the types of effective questioning strategies that PSTs used to elicit learner knowledge (Wang et al., 2019).

TeachLivE and Mursion are simulations that involve a system in which avatars (which can be students, parents, other teachers, etc.) interact with the teacher/participant. The avatars are
simultaneously supported by artificial intelligence and must be operated by a professional simulation specialist—also called an interactor or human puppeteer—who is a highly trained human in the loop that plays the roles of the avatar(s) in the simulation (Dieker et al., 2014). The real-time interaction of the simulation specialist contributes to the feeling of authenticity within the simulated learning experience. Further, this system “[combines] the engaging features of face-to-face communication and the anonymity of online environments” (Straub, 2018, p. 2), with anonymity facilitating a greater willingness to share. Two studies reported by Straub and colleagues suggest learning gains by teachers using TeachLivE in professional learning that also extended to the classroom (Straub et al., 2014; 2015).

Using simulations like TeachLivE and Mursion requires careful development of the scenario or task for the teacher/participant and the development of training materials and processes to train the simulation specialist (Bondie & Dede, 2021). Additionally, the full benefit of using these simulations is achieved when teachers/participants are prepared to go into the simulation, can use the simulation multiple times, and receive personalized coaching during and/or feedback after the simulation (Bondie & Dede, 2021; Mikeska, Howell, Dieker, & Hynes, 2021). Allowing students to code transcripts of their interactions to make sense of them has also shown promise in helping teachers/participants to change their questioning strategies (Wang et al., 2021). Coaching (e.g., by a teacher educator) during engagement in mixed reality simulations has also shown positive effects on teacher/participant learning (Cohen et al., 2020).

What teachers/participants practice within simulations ranges across studies, yet these focuses invariably include attention to interactive and communicative practices between teachers and students (or parents, etc.) and among students as facilitated by teachers. Simulations also vary with respect to specific disciplinary contexts. Relevant to the present study is the work by Mikeska and colleagues in which the Mursion® simulated classroom was used to help
elementary teachers/participants learn to facilitate argumentation discussions in science (Mikeska et al., 2021; Mikeska & Howell, 2020). Related work has examined the context of argumentation discussions in elementary mathematics (Howell et al., 2021) and engineering (Lottero-Perdue et al., 2020). However, to date, this work has been conducted at the elementary level; this study was purposively designed to build out to the secondary level and consider whether a similarly designed discussion task deployed within a simulated classroom held similar promise as a practice space for PSTs studying to become middle school science teachers.

Context

Science Performance Task

The Keep It Cold science performance task involves two components: (1) a PST-facing written document describing the goal for their science discussion and information about where this discussion fits into a larger instructional sequence, and (2) a set of training materials for the human-in-the-loop (hereafter, simulation specialist) who acts as the five middle school student avatars during the discussion. In the Keep It Cold science task, PSTs facilitate a discussion between two groups of students, the goal of which is to “come to consensus on a model describing heat transfer between the warm air and two separate cups of cold water that are made of different materials” (Author, 2021). The task materials explain that before the Keep It Cold investigation, the student avatars completed a series of three other activities exploring heat transfer and the flow of energy (e.g., observing how different cup materials affected the rate of cooling for a cup of hot chocolate). Immediately prior to the PST-led discussion, student avatars in two small groups completed the Keep It Cold investigation where they observed and recorded the temperature of cold water in two different cups (foam vs. paper) every 10 minutes. After a half hour elapsed, the student groups drew a model to explain their observations about the “differences in heat transfer between the air and the water in the cups” (Author, 2021). Each PST
uses these student generated models and explanations, as well as the students' previous class activities, to facilitate a discussion between the students about how to best represent heat transfer in a consensus model.

One of the groups, that of Savannah, Dev, and Ava, created a model that used arrows to show how heat energy from the warmer surrounding air moved towards the cups (Figure 2). For the paper cup, they showed the arrows moving into the cup, explaining that “heat energy gets into the paper cup.” However, the arrows did not similarly move through the foam cup into the water inside of the foam cup. The group explained that “the foam stops the heat, so the temperature of the water does not increase like the temperature of the water in the paper cup.” They also explained that the “heat energy ... can’t get into the foam cup.”

Savannah, Dev, and Ava’s model correctly indicated the direction of heat transfer being from the warmer air to the cooler water. Their model could be improved by showing heat transfer arrows penetrating the foam wall since the cold water in the foam cup also increased in temperature over time. During the discussion, Jasmine and Ethan’s attention to the data table may be instrumental in convincing Savannah, Dev, and Ava of this. Savannah, Dev, and Ava might also benefit from applying a small particle model to show the difference in temperature between the water in the foam and paper cups; this was a good suggestion from Jasmine and Ethan’s critique of Savannah, Dev, and Ava’s model.

Jasmine and Ethan’s model used particles instead of arrows (Figure 3). They explained that in their model they “used different colors to show the different temperatures of particles” and wrote that the “cold particles” moved more slowly than the “warm particles.” They also explained that more cold particles escaped from the paper cup than from the foam cup,
explaining that “the cold leaks out of the paper cups faster than the foam cups” and the “foam keeps most of the cold particles inside.”

Strengths of Jasmine and Ethan’s model and explanation include that they draw from evidence in the data table of temperature over time and they attempt to represent different particle motion. Improvements would focus on helping them understand that there are only water particles (not cold or warm water particles), and that the direction of heat transfer is from warm to cold environments, not the other way around. These critiques could be drawn out from Savannah, Dev, and Ava’s critique of Jasmine and Ethan’s model.

Insert Figure 3 about here

Simulation Specialist Training

For simulation specialists to use the Mursion® system, they must receive Mursion®-supported training and pass a final “checkout” assessment with a Mursion® trainer. Initial training for a particular classroom (e.g., upper elementary school or middle school) involves about 60 hours of training—30 hours of synchronous training with a Mursion® trainer and 30 hours of asynchronous training. After this initial training, subsequent Mursion® training—about 15 hours, mostly asynchronous—must be added for simulation specialists to learn to enact different classrooms. Mursion training aims to help simulation specialists learn the personalities and backgrounds (e.g., how many siblings) of the avatars in the classroom. Further, the training helps the specialists become proficient at selecting facial expressions and body movements of the avatars—either one at a time or in concert—using a game controller and Mursion® software. The specialists learn how to alter their own voices, use additional voice modulating software in Mursion® when needed, and employ vocal tics to make the avatars auditorily unique. Simulation specialists learn to have discussions across the students, use various gestures, respond in character, and respond to the requests of the teacher during multiple practice sessions.
Prior to project training, the simulation specialist for the present study received initial Mursion® training for the upper elementary classroom (related to another part of the larger project), followed by training for the middle school classroom. This amounted to about 75 hours of Mursion training. Although the upper elementary and middle school classrooms are indeed different—with different avatars of different ages—there is a great deal of overlap in the trainings (e.g., in practicing the dexterity needed to select facial expressions and movements).

Project training, which follows Mursion® training, involves roughly 15 more hours of largely synchronous work. For the Keep it Cold discussion, there are six training lessons to help simulation specialists understand and represent students’ ideas and the ways that the students can learn in the Keep It Cold discussion. During these lessons, the simulation specialist learns about the task, the prior activities the students participated in, the models each group created, their ideas about heat transfer in the two cups of cold water in the Keep It Cold investigation, and what would need to happen during the discussion for each group to change their original thinking. The simulation specialist works with a trainer, who is a science content and teaching expert, to practice the student avatars’ responses about the Keep It Cold investigation and prior activities and to rehearse full 20-minute discussions using varying teacher approaches. Trainers provide feedback to simulation specialists about where they are strong and where they need to improve, offering additional training as necessary.

Methods

Participant Sample

We sent a call to recruit secondary science PSTs to teacher educators at our project’s partner institutions. Those teacher educators then shared the recruitment flyer with their PSTs, mostly through email. In the materials, we advertised for a paid $200 opportunity asking participants to complete two surveys, prepare for and complete the simulated discussion and
complete an interview after the discussion. In the final sample, we tried to get as much variability as we could, but low response rates combined with cancelations were limiting in this respect. Based on PST availability and responsiveness, we scheduled sessions with eight PSTs.

Eight PSTs participated in this study. They identified their gender, race, and ethnicity as follows: six female and two male; seven White and one Black; and one Hispanic/Latino and seven not Hispanic/Latino. Four PSTs recently completed a bachelor's degree. All PSTs had completed a science methods course and at least one science content course designed for K-12 teachers. All PSTs indicated that they had experience participating in science discussions and had studied their importance, only half (n=4) indicated they had some or a little experience leading science discussions. None had prior experience using simulated classrooms. Throughout this paper, we identify the PSTs by ID number (e.g., T212).

Seven different teacher preparation programs were represented across this sample of eight PSTs. One PST was enrolled in a master’s degree program, two PSTs were enrolled in a five-year bachelor’s degree program, and the remaining PSTs (n=5) were enrolled in a bachelor’s degree program. Over half of the PSTs were majoring in secondary education (n=5), with four of them dual majoring in natural sciences and secondary education. All eight PSTs were pursuing certification at the secondary level (including grades ranging from: 5-12, 6-12 or 7-12) and reported that they had taken more than six college-level science courses, including science courses that focused on pedagogy. Three PSTs had previous experience working in schools, two as substitute teachers and one as a tutor.

Data Collection

In this study, there were four complementary quantitative and qualitative data sources gathered for each PST: a background survey, an avatar-based simulation performance, a post-session survey, and a semi-structured interview. Prior to facilitating the science discussion in the
simulated classroom, each PST completed an online background survey to provide information about their personal and professional characteristics and experiences, including their current major, previous teaching experience, previous science content and pedagogy courses taken, and previous experience facilitating science discussions and using simulated classrooms. The avatar-based simulation performances took place over Zoom between the simulation specialist and the PST; all were video recorded. Each avatar-based simulation session consisted of a non-content specific warm-up activity for PSTs to become familiar with the simulated classroom and student avatars, followed by the 20-minute science discussion. Immediately following the discussion, each PST completed a survey asking them about their preparation for the discussion, their perceptions on the written task, and how well they felt they facilitated the discussion. Then each PST participated in an interview that focused on their reactions to the task materials, their usefulness in planning, their perceptions on the task authenticity, the importance of argumentation, and their thoughts on using this type of performance task in teacher preparation. All discussion performances and interviews were transcribed for later analysis.

Within the survey, PSTs responded to Likert, closed-ended, and open-ended questions. Questions included asking how successful they felt they were in their science discussion session, whether they thought the amount of time they spent preparing was sufficient, whether the materials they were sent to prepare for the session were clear, and what the goals for the discussion were. PSTs also answered questions about the simulated environment, including whether the student avatar responses were typical for middle grade students, whether they felt their performance in the simulator accurately reflected their teaching abilities and whether they felt simulation experiences like the one they completed would be appropriate to include in a teacher preparation program. We also asked them how important they thought it was for middle
school students to engage in discussion, what students would need to do to engage in a discussion and what features of a high-quality discussion in the middle grades would be.

In the interview, we asked similar questions about the goals of the discussion, but also asked about the clarity and usefulness of each of the components of the task materials, as well as if any challenges with the materials arose when preparing for the discussion. We also asked about the most and least helpful parts of the materials, what they would have done differently if they could do it again, and the usefulness of the discussion task for teacher preparation.

Data Analysis

Our research team used a convergent parallel mixed methods approach to answer the study’s research questions (Creswell & Plano Clark, 2011). We used descriptive statistics to summarize the PSTs’ responses on each of the Likert scale or close ended survey items to understand their perceptions about the performance task and simulated classroom. For each set of responses to Likert scale questions, we calculated the number and percentage of PSTs who provided specific answers and noted patterns across the responses. We conducted an iterative qualitative analysis of PSTs’ responses to open-ended survey items and interview questions (Creswell, 2009; Maxwell, 2013). We applied one or more codes to each response, some of which we anticipated from previous research (Author, 2021) and some that emerged from our analysis.

We analyzed the PSTs’ discussion approaches by reading through the discussion transcripts and determining whether there was evidence of the PST attending to three specific content features (direction of heat transfer, speed of particles, and differences in heat transfer between two cups) and engaging in three pedagogical features (encouraging use of data to justify ideas, encouraging critique, and referencing the learning goal) during the discussion. We identified these six features and used them in the analysis, as they were the ones that the task, as
designed, was intended to prompt the PSTs to take up during the discussion. We also analyzed where the PSTs decided to start their discussion: either with the student avatars’ models or by asking the student avatars to think back to the previous investigations.

We scored each discussion using a previously developed four-level scoring rubric (Author, 2019; level one: beginning practice; level two: developing practice; level three: well-prepared practice; level four: commendable practice) on five key dimensions of high-quality argumentation-focused discussions: attending to student ideas (dimension 1), developing a coherent storyline (dimension 2), encouraging student-to-student interactions (dimension 3), developing students’ conceptual understanding (dimension 4), and engaging students in argumentation (dimension 5). For this study, three raters used a series of online webinars and related documents to develop a shared understanding of the scoring rubric and how to apply it consistently across discussion performances. First, each rater read through the scoring rubric document; each dimension was described in-depth and had two or three related indicators to explain its focus. For example, dimension four, which focused on the extent to which the PST adequately developed students’ conceptual understanding, was comprised of three indicators. One indicator assessed the extent to which the PST provided opportunities for students to evaluate one another’s ideas (versus the teacher being the one engaged in the evaluation of student ideas). Another indicator evaluated the extent to which the PST made any incorrect or imprecise statements about the content during the discussion. The final indicator evaluated how well the PST addressed key student misunderstandings during the discussion – ideally by having other students critique, offer rebuttals, and use evidence-based reasoning to persuade each other. Each indicator included specific observable characteristics at each of the four scoring levels; detailed observer notes also accompanied each scoring dimension to help raters know how to make decisions between scoring levels. Second, each rater completed a series of seven different
webinars – one for each scoring dimension; one to describe the overall rating process and logistics; and one about how to be aware of and address bias during scoring. The dimension-specific webinars explained the indicators for each dimension, reviewed the different scoring levels, and provided the raters with opportunities to practice scoring video clips on these dimensions and indicators. Finally, each rater completed and received feedback on their scoring for one full practice video; they also met with a scoring training lead to review their scores prior to beginning the scoring of the study videos. Exact initial rater agreement was 70% across dimensions for two of the eight videos, with disagreements reconciled. We then analyzed the scored discussions to examine whether this performance task elicited adequate variability in PSTs’ ability to engage in this teaching practice. This analysis involved comparing the number and percentage of PSTs who scored at each scoring level within and across the five scoring dimensions, as well as examining each PST’s score profile across the five dimensions to determine if their scores were consistent or varied across dimensions.

Findings

RQ1: PSTs’ Perceptions of the Performance Task and Discussion Implementation

Participants shared their perceptions of the clarity and helpfulness of seven different sections of the task materials (e.g., Introduction, Lesson Overview, etc.) in preparation for the discussion. All PSTs rated the clarity of the materials to be somewhat or very easy to understand in all sections, except for one PST who did not rate the video examples section because they did not review it. All PSTs reported that the Introduction to the Keep It Cold task, which introduces the learning goal and describes the goal of the discussion from the PST’s perspective, and the Teaching Tips, which are scattered throughout the task with reminders about important ideas to attend to and how to most efficiently interact with the students, were very easy to understand. The remaining sections received a mix of very or somewhat easy to understand ratings. PSTs
also reported that all sections were somewhat or very helpful in preparing for the discussion, with findings showing that the Teaching Tips section and the Student Responses/Making Sense section, which provides the students’ written work and highlights their understandings and misconceptions, were reported by the majority of PSTs (n=7) to be the most helpful.

In terms of their understanding of the task goal, all PSTs reported that the primary discussion purpose was to reach a consensus about the most effective model of heat transfer. For example, one PST indicated that the goal was “to complete a consensus model by using critiques of past models (those already made by the students), and to use evidence in the creation of a representation.” Most PSTs also noted secondary purposes for the discussion, such as focusing on argumentation and making connections to previous work (n=6), encouraging student to student discourse (n=4), correcting student misconceptions (n=3), making meaning from the experiment (n=1), speaking and thinking like scientists (n=1), and leading students to the right answer (n=1). For example, one PST responded that their goal was “to have all students participate equally and get students to correct one another's misconceptions.”

When asked to rate their overall success in meeting the discussion’s student learning goal, most PSTs responded that they had been somewhat (n=6) or very successful (n=2). Areas in which all PSTs reported that they were very or somewhat successful included incorporating key ideas in students’ written prework and facilitating a discussion that is organized, purposeful, and focused on the content at hand. However, PSTs felt least successful in promoting student interaction and making precise statements about the science content to help students work towards correct understandings. All PSTs reported that if they were given more opportunities to practice in the simulated classroom their performance would improve.

Overall, the PSTs described the task as reasonable for middle school, aligned with their past experiences with students at this age, and that it was appropriate in terms of appropriate
middle school content. When asked how typical the responses and behaviors of the student avatars during the discussion were compared with the responses and behaviors of actual students at this grade level, all PSTs reported that the avatars behaviors were very typical (n=2) or somewhat typical (n=6). Descriptions of the discussions by PSTs noted that it “felt like a real discussion,” and it is “unnatural how natural it was,” although some PSTs noted that difficulty seeing non-verbal expressions and no access to a whiteboard contributed to reduced authenticity.

When asked how appropriate or important they believe a discussion task like this would be as a component of a teacher preparation methods course, the PSTs thought it would be very (n=6) or somewhat important (n=2). All PSTs agreed that it was an experience that should be included in teacher preparation due to the limited in-class practice teaching experiences currently provided and the ways in which this task gave them an opportunity to facilitate a discussion without having to write a full lesson plan. When asked how reasonable the task was for middle school students, the PSTs said it was aligned with what students at this age would and should be doing, with one PST noting how such an activity would support students later in high school.

RQ2: PSTs’ Abilities and Approaches to Facilitating Argumentation-Focused Discussions

The PSTs demonstrated variability in the quality of the discussions they facilitated in the simulated classroom and in the approaches they used. We begin this section by providing a broader picture of the quality of the discussion these PSTs facilitated related to five dimensions of this practice. We end by noting the extent to which they addressed key content and pedagogical features noted in the designed task during the discussion, as well as provide an in-depth look at these similarities and differences in approaches across two PSTs.

PSTs’ Discussion Abilities

We observed similarities and differences in how well the PSTs were able to address the five key dimensions of high-quality discussions. As shown in Table 1 and Figure 4, these PSTs
were most successful at attending to students’ ideas, with moderate success in facilitating a coherent discussion, developing students’ conceptual understanding, and engaging students in argumentation. In comparison, these PSTs were less successful at prompting direct student interaction. As shown in Figure 5, findings also showed variability across the PSTs’ dimension scores and their overall scores (range of 8 to 18 total points out of 20), illustrating how PSTs could be stronger in certain areas and their discussion abilities varied across these five dimensions of this teaching practice. This figure shows how there were six unique scoring profiles (two pairs of PSTs shared the same scoring profile) across these five dimensions of practice. All PSTs’ dimension scores varied across two or three different scoring levels.

Insert Table 1, Figure 4, and Figure 5 about here

PSTs’ Discussion Approaches

Table 2 provides a summary across all PSTs of both content and pedagogical features that were evident (or not) in the discussions. Note that we have highlighted a subset of features – particularly the ones that were figured most prominently in this performance task -- as providing an exhaustive list is beyond this paper’s scope. PSTs largely addressed the features that they wanted the students to include in their models of heat transfer: arrows indicating the direction of heat transfer (6 PSTs), the speed of particles (8 PSTs) and differences in heat transfer across the foam and paper cups (8 PSTs). However, the PSTs took unique paths to reach that endpoint.

Insert Table 2 about here

Six PSTs began by having the students reference the models that they created. Five of those six PSTs asked students, in one form or another, to say what they agreed with or disagreed with in the other group’s model. The prior investigations were the starting point for the remaining two PSTs. One asked the students to look specifically at the Heat Conduction activity to start from a common understanding of heat transfer before they discussed how they modeled
it. The other PST who started by asking students about what all the previous investigations had in common reported that this was to reach consensus on the direction of heat transfer before discussing the models. Those two PSTs then asked students about the features of their models and what should be kept in the final model.

All PSTs worked throughout the discussion to at least modify the students’ existing models of heat transfer, with five PSTs successfully addressing the learning goal to create a single consensus model. The remaining three PSTs either had students modify their existing models or talked broadly about what would be included in a final model; however, they did not have the students actually create the new consensus model during the discussion.

In addition to asking students what they agreed or disagreed with in each other's models (5 PSTs), seven PSTs asked the students to explain their agreement or disagreement by citing evidence from the previous investigations to accompany claims about the direction of heat transfer, the motion of particles, and differences in transfer between the foam and paper cups. While levels of agreement is a simple form of argument critique, the fact that most PSTs pressed the students to cite evidence from the previous investigations highlights the potential that tasks like this, specifically designed for argumentation, have to support PSTs to learn to engage in this ambitious teaching practice. Some PSTs went a step further than asking for agreement. For example, one PST said to the student avatars, “Hearing Ethan’s statement and taking a look at the data, Savannah, Dev and Ava, what do you think about modeling heat transfer with the foam cup?” This PST was making use of both Ethan’s critique and the data from the previous investigation to encourage Savannah, Dev and Ava’s group to reconsider their model with this information in mind.

To illustrate some further variability in approaches and abilities in the discussions, two PSTs’ discussions are summarized here and depicted in Figure 6. T212 and T209 were chosen
because they started their discussion in different ways and their discussion scores differed quite a bit with T209 scoring much higher across the dimensions than T212.

Insert Figure 6 about here

T212 started the discussion by focusing on Savannah, Dev and Ava’s model. After reading the their full response as it appeared in the task packet aloud to the class, T212 asked Jasmine and Ethan to read what they wrote about their own model aloud. This PST was the only one to spend time reading the students’ responses aloud, even though the students had already reviewed each other’s models and wrote critiques of them. The PST then encouraged the student avatars to look at the data table from the Keep It Cold investigation to notice that, contrary to their model, heat was still entering the foam cup because the temperature of the water in it was increasing. The student avatars decided that their arrows should not stop at the edge of the foam cup, but should still enter the cup, just less so than in the paper cup. Again calling on prior investigations to support the discussion, the PST brought up the Heat Conduction activity involving pats of butter, a candle and ice to help them remember that they learned that heat moves from warmer to cooler areas.

After settling the issue of the direction of heat transfer, the class turned their attention to the particles. By pressing the students to think about a continuum of cold and warm particles, the PST encouraged the students to talk about particles with respect to the speed at which they were moving instead of the kind of particle they were. The class then began talking about creating a consensus model with time running out. The PST asked the class, “What can we agree on as far as the heat transfer and maybe the reason why the foam cup and the paper cup are different?” Dev pointed out that heat enters both cups but enters the foam cup more slowly than it does the paper cup. The PST recorded this idea on a piece of paper with thick (the paper cup) and thin
(the foam cup) arrows entering the cup and showed it to the class. The PST then asked the students, “What would the particles look like?” At that point, time ran out and the session ended.

In summary, this PST read the student work to the class, addressed the difference in insulation properties of the foam and paper cup, discussed the direction of heat transfer and then discussed the particles as moving at different speeds instead of being different kinds of particles. Then the PST focused the class’s attention on the consensus model and asked them what they could agree on to include in it. Although this PSTS did address the key misunderstandings that were evident in the students’ models, this PST struggled to engage the student avatars in extensive argumentation or interaction with one another.

Another PST who demonstrated more skill in facilitating an argumentation-focused discussion among the student avatars was T209. This PST started his session by asking the student avatars to look back at the Heat Conduction activity with the candle, pats of butter and ice. He asked the class, “Now, from that activity, what did you notice was happening?” He pressed the students to consider the direction of heat transfer by first asking which pats of butter were melting first. He went a step further to ask the students, “What type of energy is that candle producing?” Followed by asking which direction that heat energy was moving and encouraged the class to reach consensus on the direction of heat transfer. He said, “Savannah, Dev, Jasmine, and Ethan, what do you think about Savannah’s idea that heat travels from a hot to a cold?” Much like T212, T209 was using the prior investigation to help the student avatars focus on the direction of heat transfer before thinking more specifically about the features that were in the students’ models. However, T209 went a step further by having them consider each other’s ideas and respond to them directly to build towards consensus.

To make sure the class agreed on the direction of heat transfer, and keeping the discussion close to the models themselves, T209 asked Savannah, Dev and Ava to describe their
model. After they did, he asked Jasmine and Ethan, “Now that we talked about the butter activity, I know you didn’t agree with the direction of their arrows. How do you feel about the direction of the arrows showing heat transfer in their model?” Once Jasmine and Ethan both agreed on the direction of heat transfer, the PST said, “If you have questions about the idea of the movement of heat, we can revisit that...For right now let’s work with the common definition that heat transfers...from hot to cold.” With these talk moves, the PST was linking the discussion to the students’ work and checking in to be sure that the whole class agreed on the takeaway from the Heat Conduction activity. In these ways, he was working toward a coherent and connected discussion.

Similar to T212’s session, T209 encouraged the student avatars to look at the Keep It Cold data table for evidence. He did not name the data table like T212 did, though. He asked Savannah, Dev and Ava, “Is there any evidence or any data that can support your model...showing that the heat was increasing in the cup?” The students themselves then referred to the data table and said, “If you look at the data table, the temperature of the water increased” in both cups. Once the students reached agreement around the fact that heat was entering the foam cup, he paused the discussion to remind students of their end goal: to create a consensus model to explain heat transfer. He said, “How can we show that these cups are different and that heat transfer is different because these cups are made of different materials?” So, in comparison to T212, this PST was addressing the key misunderstandings represented in the models, but was also supporting the students during the discussion to keep in mind why they were talking about those ideas: to ultimately create one model that explained what was happening in the two cups. In this sense, he was keeping the discussion connected to the learning goal while also building off the students’ contributions. A feature that T209 included in his discussion that was missing from T212’s was engaging students in conversation with one another. He asked the students to
engage in a turn-and-talk with one another to decide how they could represent what was happening in the two cups in their model. Throughout, T209 also made sure all students’ voices were heard. It was not satisfactory for him to hear the correct idea and move on, he made sure there was consensus among the five student avatars before moving on to a new idea.

Much like T212, T209 also discussed the particles and addressed the fact that the particles were not different but were just moving at different speeds. He had the students talk to one another again to decide how to represent movement of the particles in the cups. While T209 also ran out of time, he concluded his discussion by saying, “We’re going to see if we can’t bring both of your ideas, the arrows in the heat transfer and the particle movement together into one consensus model to really represent, in a model, what’s happening with heat transfer.” Here, T209 once again attributed the ideas to the students and reminded them of the purpose of their discussion: to create a consensus model.

Discussion

Previous research has tended to focus on approaches and strategies for supporting students’ engagement in scientific argumentation and examining various factors that support or hinder students’ productive engagement in this important science practice (Colley & Windschitl, 2016; McNeill, 2011; McNeill et al., 2016; 2017). One key factor points to the importance of the teacher’s role and their beliefs, understanding, and teaching skills in this area (Berland, 2011; Driver et al., 2000; Knight-Bardsley & McNeill, 2016). That is, research has suggested that students’ productive engagement in scientific argumentation is directly related to how science teachers set up and support that engagement within classroom interactions and activities. More recent research has included studies that use specific tools and approaches to help science teachers learn how to support students to engage in scientific argumentation, especially as part of whole class and small group discussions (e.g., Osborne et al., 2019; Marco-Bujosa et al., 2017;
Mikeska et al., 2021). Our findings suggest that the use of a performance task set in the context of a simulated classroom has potential as an innovative tool that science teacher educators can leverage to help PSTs learn to engage in this teaching practice.

First, study findings indicate these PSTs saw value in the use of such performance tasks as a useful tool that could be integrated into secondary science method courses to provide a practice space for them to improve in their ability to facilitate these kinds of discussions. There was also strong agreement that the task authentically represented the work that secondary science teachers engage in when facilitating discussions and the student avatars responded in ways typical of middle school students. These findings are similar to other studies that examined PSTs’ perceptions of the authenticity and usefulness of such performance tasks, albeit within elementary mathematics and science methods courses (Author, 2020).

Second, findings provided empirical evidence that the PSTs understood the primary goal of the science discussion they were being asked to facilitate in the simulated classroom. PSTs’ similar conceptions of the discussion’s primary student learning goal likely was a reason that there were similarities in the content and pedagogical aspects they attended to or engaged in within their discussions. Findings showed that during the discussion there was strong attention to the three key aspects of the consensus model noted in the performance task as important to address – with all PSTs providing opportunities for the students to consider how to illustrate the speed of the particles and the difference in heat transfer with respect to the foam and paper cups. Similarly, most PSTs attempted to use key teaching moves, such as encouraging the use of data to justify or refine ideas and encouraging students to critique others’ ideas, noted in the performance task as important for supporting students’ productive engagement in the argumentation-focused discussion. Collectively, this suggests that the PSTs understood the purpose of the task and the various content and pedagogical features they needed to attend to
when facilitating the discussion. Despite this shared understanding findings showed that there was variability in how well the PSTs were able to engage in certain dimensions of this practice.

These PSTs’ discussion performances illustrated variability in skill within and across the five dimensions of this teaching practice. This variability suggested that PSTs still had room to grow – within at least one but typically within multiple dimensions – to reach the “commendable” scoring level. In addition, no PST scored at the same level across all five dimensions. Instead, their individual scoring profiles indicated that their discussion facilitation skills had both strengths and areas for growth. This finding points to the potential viability of such tasks as tools to engage PSTs in productive approximations of practice, as their scores did not illustrate a ceiling effect and left room for improvement over time.

Across the study participants, results showed that the PSTs encountered the most difficulty in the third scoring dimension – encouraging student to student interactions – during the discussion. This finding aligns with previous research showing that it can be difficult for teachers to facilitate student led discussion where students are given opportunities to interact directly with each other to support scientific sense-making (Davis et al., 2006). Instead, research has shown that teachers tend to engage students in interaction patterns where the teacher controls the discussion turn-taking and evaluates student responses – what has been coined the initiate-respond-evaluate (IRE) discourse pattern (Cazden, 1988; Lemke, 1990). This finding suggests that this aspect might be a good starting place for teacher educators to provide additional scaffolding for PSTs to improve in this teaching practice.

Limitations

There are three key limitations in this study. The first of these is that we used a sample of convenience, which is not representative across all secondary science PSTs in the United States, which limits the generalizability of the study’s findings. In previous research, we found that
working with approximately five to eight PSTs provides sufficient variation to examine their perceptions of the task’s clarity, usefulness, and authenticity and their approaches to facilitating the specific science discussion for one performance task (Author, 2020).

The second limitation is that we used self-report data from study participants. This comes with the possibility of response bias where participants share responses that they think the researcher wants to hear instead of their actual perceptions. To decrease the possibility that participants would only provide positive feedback, we clearly communicated to each PST that the goal of this study was to better understand how the performance task was functioning and ways that it could be improved to better support PST learning in the future when we integrate the use of the performance task into teacher education programs (in our case, secondary science methods courses). We also assured them that their responses would be used to identify patterns across participants to inform future task revisions.

Finally, this study examined the PSTs’ perceptions and use of the simulated classroom as they engaged in only one ambitious science teaching practice: facilitating argumentation-focused discussions. In addition, this study only focused on the use of one science performance task, which was limited to one science content area (physical science) and topic (heat transfer). It is possible that the PSTs’ perceptions, abilities, and approaches may have been different if the performance task had addressed other science content areas or topics. Future research could examine how these aspects might vary across content areas and topics at the secondary level.

Conclusion

Findings from this study indicated that the PSTs shared positive perceptions of this science performance task’s clarity, usefulness, and authenticity. This finding suggests the performance task has strong face validity and has the potential to be a useful learning tool to support PSTs as they learn to engage in this ambitious teaching practice. Study results also
indicated that the PSTs showed a strong understanding of the task’s primary discussion goal, although their scores indicated that they had room to grow in their ability to facilitate such discussions. As such, this science performance task, as designed, created a situation where the PSTs could practice facilitating an argumentation-focused science discussion and potentially build towards improvement over time. Providing a standardized task where each PST must contend with similar student ideas and is trying to address the same student learning goal can provide productive fodder for science teacher educators to compare teachers’ discussion abilities and identify strengths and areas for targeted growth across groups of teachers. Such tools can also provide artifacts for analysis where teachers can reflect on the affordances and limitations of their own and others’ teaching approaches. Future research can examine whether and how PSTs’ ability to engage in this teaching practice improves when using these types of performance tasks within an online simulated classroom and how teacher educators integrate the use of such tasks within teacher education settings.
References

https://www.learntechlib.org/p/219088/.

https://doi.org/10.3102/0162373720906217

https://doi.org/10.1002/tea.21659

Table 1

Descriptive Statistics for Preservice Teachers’ Discussion Scores by Scoring Dimension (n=8)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Range</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attending to Student Ideas (Dimension 1)</td>
<td>3.25</td>
<td>0.89</td>
<td>2.00</td>
<td>3.50</td>
</tr>
<tr>
<td>Facilitating a Coherent and Connected Discussion (Dimension 2)</td>
<td>3.00</td>
<td>1.07</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Encouraging Student-to-Student Interactions (Dimension 3)</td>
<td>1.88</td>
<td>0.64</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Developing Students' Conceptual Understanding (Dimension 4)</td>
<td>3.13</td>
<td>0.64</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Engaging Students in Argumentation (Dimension 5)</td>
<td>3.00</td>
<td>0.76</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Total Score</td>
<td>14.25</td>
<td>3.62</td>
<td>10.00</td>
<td>15.00</td>
</tr>
</tbody>
</table>
Table 2

Comparison of Content and Pedagogical Features in Preservice Teachers’ (PSTs) Discussions

<table>
<thead>
<tr>
<th>PST ID</th>
<th>Attends to arrows indicating direction of heat transfer</th>
<th>Attends to speed of particles</th>
<th>Attends to differences in heat transfer across foam and paper cups</th>
<th>Encourages use of data table as evidence to justify or refine ideas</th>
<th>Encourages students to engage in critique of the other group’s model and/or ideas</th>
<th>References the learning goal during the discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>T208</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>T209</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>T210</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>T211</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>T212</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>T213</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>T214</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>T215</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Total</td>
<td>75% (6)</td>
<td>100% (8)</td>
<td>100% (8)</td>
<td>82.5% (7)</td>
<td>62.5% (5)</td>
<td>75% (6)</td>
</tr>
</tbody>
</table>

Note. “Yes” means that there was evidence of that content or pedagogical feature within the science discussion the PST facilitated, while “No” means that feature was not present within the science discussion the PST facilitated in the simulated classroom.
Figure 1

Mursion’s® Middle School Classroom. Image courtesy of Mursion, Inc

Figure 2

Savannah, Dev, and Ava’s Model in the Keep It Cold Science Performance Task
Jasmine and Ethan’s Model in the Keep It Cold Science Performance Task
Figure 4

Preservice Teachers’ Discussion Scores by Scoring Dimension (n=8)
Preservice Teachers’ Discussion Scores Across Scoring Dimensions (n=8)
Figure 6

Comparison of T212 (lower scoring) and T209’s (higher scoring) Discussions

<table>
<thead>
<tr>
<th>T212’s Approach</th>
<th>T209’s Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read (or had students read) the student work aloud</td>
<td>Directed students to one of the previous investigations: the Heat Conduction Activity</td>
</tr>
<tr>
<td>Discussed the difference between the heat transfer in the foam and paper cups using the Keep It Cold data table</td>
<td>Asked Savannah, Dev and Ava to describe their model, including the arrows in their model and what they show</td>
</tr>
<tr>
<td>Discussed the direction of heat transfer</td>
<td>Directed students to the Keep It Cold data table to inform discussions about the arrows in Savannah, Dev and Ava’s model</td>
</tr>
<tr>
<td>Discussed the particle motion as related to heat energy</td>
<td>Asked Jasmine and Ethan to describe their model, including how they showed particle motion</td>
</tr>
<tr>
<td>Began discussing how to include features in a consensus model</td>
<td>Asked students to engage in a turn-and-talk about how to model particle motion</td>
</tr>
</tbody>
</table>