
1

Assessing college-ready computational thinking

PIs: Mark Wilson, Karen Draney, Richard Brown
Yukie Toyama, Rebecca McNeil, Sean Tan, Richard Patz

Graduate School of Education, University of California, Berkeley
National Math and Science Initiative (NMSI)

DRK-12 PI Meeting
June 2021

This project is funded by the National Science Foundation, grant # 2010314. Any
opinions, findings, and conclusions or recommendations expressed in these
materials are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

2

Background
• UC Berkeley BEAR Center and NMSI have been collaborating to develop assessments

focused on critical reasoning for college readiness in two domains:
(a) problem-solving using mathematics, and
(b) data-based decision making.

Now, we are developing a third domain on computational thinking.
• Computational thinking is a fundamental analytical ability for all students, joining

the ranks of reading, writing, and arithmetic (Wing, 2006)
• Computational thinking applies not only to computer science, but also to a variety of

STEM disciplines, as well as the arts, humanities, and social sciences (Bundy, 2007;
NRC, 2010, Perković et al., 2010; Wing, 2008)

• Our project thus seeks to develop valid, reliable, and fair assessments in
college-ready computational thinking (CoT)

○ Applicable across a wide array of disciplines (not just Computer Science)
○ Not associated with particular curriculum or programming language
○ Supports both formative and summative uses for teachers and students in general-purpose

high school classes and introductory college courses

3

Research questions
• This project currently focuses on two questions:

1. What are the most important elements of computational thinking for
college readiness?

2. What kinds of assessment items will yield the most usable diagnostic
assessment for high school students and teachers with a high degree
of reliability, validity, and usability?

• In addition, we also hope to address the following at a later stage:

3. How will teachers use this assessment in their classrooms to aid students
in improving their computational thinking skills?

4. Will the use of this assessment in a formative way result in improvement
in student performance in end-of-course college-ready tests of
mathematics?

4

Assessment design
We use a principled assessment design framework known as the BEAR
Assessment System (BAS, Wilson, 2005), which includes four building blocks and
associated technology tools to be used for constructing quality assessments.

• The building blocks constitute steps in a cycle of development, which may be repeated
several times in order to refine various assessment components.

• The four building blocks also embody the three foundations from the NRC Assessment
Triangle (NRC, 2001)

 BAS with Four Building Blocks NRC Assessment Triangle

5

Definition of college-ready computational thinking (CoT)

“Student abilities to design and evaluate algorithmic solutions to real-world
problems in substantive domains, often iteratively, in formats that allow both
humans and/or computers to implement them.”

Our current definition is:

• aligned with the view of computational thinking as problem solving (e.g., Aho, 2011;
Fraillon et al., 2019; Wing, 2011);

• consistent with Conley (2008)’s view that formulating & solving routine and
non-routine problems is a key cognitive strategy for college readiness.

• but is rather narrowly focused on “algorithmic” solutions;
○ we are looking at broadening the definition to include computational practices

that go beyond problem solving, such as modeling and simulation, to better
understand how systems work (e.g., Weintrop et al., 2016).

6

CoT assessment framework
The framework comprises four dimensions (or
constructs):

• May be viewed as an iterative sequence of
steps starting with problem
conceptualization and design; however,
beginners may start by
implementing/modifying existing solutions
(Lee et al., 2011)

• Each dimension/construct is composed of an
underlying continuum in the form of a
construct map (Wilson, 2005; see next slide).

○ Construct maps can be interrelated to
form a larger learning progression
(Wilson, 2009) for college-ready
computational thinking *CaP is currently not one of the constructs under development

due to the nature of our assessments, but may be considered in
the future.

7

Construct map: Designing computational solutions (DCS)
Level Design

6. Strategic/
Step Beyond

Fluidly designs multiple solutions with generalization & creativity. Articulates
trade-offs among solutions/competing goals. Does not foreclose on known solutions.

5. Integrated /
relational - complex

Designs a generalizable solution that can be applied to a range of instances. Beginning
to attend to special cases. (Re)frames a problem into a familiar type.

4. Integrated/
relational - simple

Designs a solution(s) to a problem with relational understanding of multiple subparts
with complex operations (e.g., loop, if-then-else). Beginning to attend to the
size/nature of a problem space and the range of possible solutions.

3. Multi-part solution Designs a solution with a linear/discrete sequence of substeps. May identify a part
that can be automated.

2. Simple/partial
solution

Identifies a simple/partial solution that may work just in one instance, or a general
principle/approach without much specificity.

1. Attempting Attempts to design with appropriate vocabulary but cannot provide a meaningful
response.

0. Not yet evident No evidence

in
cr

ea
si

ng
 s

op
hi

st
ic

at
io

n

highlighted = updated as we examined the Fall 2020 pilot data
and calibration results

8

Sample DCS task: Market
[ABRIDGED VERSION]

Due to social distancing guidelines, a maximum of 15 customers are allowed inside a market at any given time. Customers arrive in groups
of varying sizes, and groups are allowed to enter in the order they arrive (but groups may leave the market in any order).

Currently, there are 13 people inside the market, and 6 groups are waiting in line outside as shown below.

Note: This task was inspired by Sample Assessment Scenario 2B
(Witherspoon et al., 2017)

9

Sample DCS task 1: Market (continued)
The market owner wants you to develop a computer program that automatically opens the entrance door when there is enough capacity
in the market to accommodate the next group. For this program to work, you have to specify the input, an algorithm, and the output as
outlined below.

[a] What input(s) needs to be provided to the program?

[b] Using the input(s) you identified in [a], write the algorithm that determines whether the door opens (output = "yes") or remains closed
(output = "no"). Write your answer following the format of the algorithm example below.

[c] The market owner does not know much about algorithms but wants to know what your algorithm is telling the computer to do. Write a
short explanation for him in plain English.

10

Scoring guides for Market & Video game
Score Description

4. Integrated/ relational:
simple

● Identifies two variables: x = # of ppl in the next group; y = # of ppl
inside) and the constant: 15 = max # of ppl allowed, AND

● Designs a complete and correct solution using the three elements: If
x + y <= 15, yes, else, no.

3. Multi-part solution ● Identifies the 3 elements specified above BUT
the solution offered is fragmented / incomplete.

2. Simple/ partial
solution

● Identifies only 1-2 elements specified above, OR a specific case for a
certain output: e.g., Door opens if 11 ppl are inside & next group has
4 ppl, OR

● Identifies a general principle: e.g., The door opens when there is
enough space inside.

1. Attempting ● Repeats algorithm example given in the prompt: If x <6, yes, else no.

0. Not yet evident IDK, Off-topic.

11

Summer 2020

Literature
review

Fall 2020

Pilot testing 1

Spring 2021

● 8 students
● 32 items

Cognitive labs

Winter
2020-21

Scoring,
calibration
& analysis

Summer 2021

Further analyses
standards setting

Construct
maps & item
development

Item panel & review
Internal within research team
External with NMSI coaches

● 208 students enrolled in
an AP CS course

● 2 forms, 37 items

Advisory panel
meeting

Constructs & items
refinement● 120 students

enrolled in an
AP CS course

● 2 forms, 38
items

Pilot testing 2

Item revisions

Item generation

Project Activities

12

Preliminary findings
Based on the Fall 2020 Pilot

Analyses for the other two constructs are underway

13

• Each construct was
calibrated separately,
using Master’s (1982)
Partial Credit Model

• The WrightMap shows an
upward trend in
threshold difficulties &
banding as construct
levels increase, providing
validity evidence for our
hypothesized structure of
the Design construct.

• As we analyzed the data,
we iterated on our
construct level definition,
scoring guides, and item
design.

Construct validity (WrightMap)

distribution of
student ability

DCS4: Integrated

DCS3: Multi-part

DCS2: Simple

DCS1: Attempting

14

Other validity and reliability evidence

• Overall CoT EAP/PV reliability: 0.87
• Response process: Students tend to spend more time and

exhibit/report greater difficulty when solving higher level tasks
during cognitive labs.

• Relationship to prior experience
○ Students with high level of

computing experience (e.g.,
coding, robotics, web design)
tended to have higher CoT
scores.

15

What we learned...
• Preliminary results offer empirical support for our hypothesized

construct levels for the DCS construct:
• Iterative assessment development is crucial

○ In addition to item paneling, multiple rounds of cognitive labs as well as
iterating on items, scoring guides, and construct level definitions against
empirical results (WrightMap) are key in refining the assessment and our
understanding of the constructs.

• Balancing the authenticity of a problem and the amount of
subject-matter knowledge required is a challenge in designing CoT
assessment tasks.

16

Future steps
• Continue assessment development cycles:

○ Refine constructs, especially how to differentiate them
○ Refine construct levels, items, and scoring guides
○ Develop more items with dynamic features
○ Collect further validity and reliability evidence

e.g., relationship with other variables including teacher ratings of
students’ CoT proficiency and AP CS exam results

• An interview/survey study with college faculty
○ to explore what they would like students to know and be able to do upon

enrolling into their introductory courses

• Usability and implementation studies
○ to learn about students and teachers’ uses and their perspectives

17

References
Aho, A. V. (2011). Computation and computational thinking. ACM Ubiquity, 1, 1-8.
Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1, 6769.
College Board. (2017). AP Computer Science Principles Course and Exam Description: Including the Curriculum Framework. New York:

The College Board.
Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2019). IEA International Computer and Information Literacy Study

2018 assessment framework. Cham, Switzerland: Springer.
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Computational thinking for

youth in practice. ACM Inroads, 2(1), 32-37.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.
National Research Council (NRC). (2001). Knowing what students know: The science and design of educational assessment.

Washington, DC: National Academy Press.
National Research Council (NRC). (2010). Committee for the workshops on computational thinking: Report of a workshop on the scope

and nature of computational thinking. Washington, DC: National Academies Press.
Perković, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for computational thinking across the curriculum. In

Proceedings of the fifteenth annual conference on Innovation and technology in computer science education (pp. 123-127).
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for

mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147.
Wilson, M. (2005). Constructing measures. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in

Science Teaching, 46(6), 716-730.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society,

366(1881), 3717-3725.
Wing, J. (2011). Research notebook: Computational thinking—what and why. The Link Magazine, 6.
Witherspoon, E. B., Higashi, R. M., Schunn C. D., Baehr, B., & Shoop, R. (2017). Developing computational thinking through a

virtual robotics programming curriculum. ACM Trans. Comput. Educ., 18, 1.

18

Thank you

Howard Everson
Carolyn Huie Hofstetter
Pedrito Maynard-Zhang
Zachary Pardos
Roy Pea
Kathleen Scalise
Finbarr (Barry) C. Sloane
Michelle Wilkerson

Ana Maria Albornoz Reitze
David Torres Irribarra

Advisory Panel

BEAR IT

Ryan Higgins
Melissa Estremera
Diane Keller
Paula McKinney
Erica Roberts
Marilyn Turmelle
Participating teachers &
students

NMSI

Jerred Jolin
James Mason
Perman Gochyyev
Xingyao (Doria) Xiao

BEAR Researchers

Evaluator
Carolyn Huie Hofstetter

Graphic designer
Greg Klinger

