Fraction Activities and Assessments for Conceptual Teaching/Model Mathematics Education (Model ME)

Jessica H. Hunt, Ph.D.

North Carolina State University jhunt5@ncsu.edu

INTRODUCTION

This poster describes the outcomes, dissemination, and scaling of project work from "Fraction Activities and Assessment for Conceptual Teaching (FAACT)."

We describe the results of a pilot study for FAACT, free curriculum materials, and how the work has been translated to a new game-based project, Model Mathematics Education (ModelME). A link to an intro video for ModelME's game-based curriculum will be shared.

RESEARCH QUESTIONS & ANALYSIS

Research Question 1: Is there a statistically significant difference pre and post-intervention in students score on a measure of fraction concepts?

Research Question 2: To what extent does an intervention based in learning trajectories demonstrate evidence of increased student concepts of fractions, defined as conceptual advance and performance differences?

Analysis for Question 1:

Paired sample t-test to evaluate significant change in score on test comprised of district end of course exam fraction items.

Analysis for Question 2:

3 stage analysis of video data, transcripts, and field notes for evidence of units coordination and generation of heat map.

- Constant comparison of each students' partitioning and iterating processes in each task.
- Emergent coding of units coordination across tasks.
- Content analysis to determine percentages of each process and units coordination across the study.

Activities (tasks, representations, questions) set along a learning trajectory:

Task Set 1

Share multiple items among multiple people

Representation: open

Task Set 3

- Using a representation that stood for a unit fraction to produce another quantity.
- Using a
- Representation: open \rightarrow bars, rectangles

	121 2 10	Coordination by	1321
Group	Student	Student	1
1 -	А	Partitioning	
		Iterating/Both Processes	_
		Units Coordination	
	в	Partitioning	
		Iterating/Both Processes	
		Units Coordination	
	С	Partitioning	
		Iterating/Both Processes	
		Units Coordination	
	D	Partitioning	
		Iterating/Both Processes	
		Units Coordination	
2 -	А	Partitioning	
		Iterating/Both Processes	
		Units Coordination	_
	в	Partitioning	
		Iterating/Both Processes	_
		Units Coordination	
3	А	Partitioning	
		Iterating/Both Processes	_
		Units Coordination	
	в	Partitioning	
		Iterating/Both Processes	_
		Units Coordination	
	с	Partitioning	
		Iterating/Both Processes	
		Units Coordination	
	D	Partitioning	
		Iterating/Both Processes	
		Units Coordination	
	Е	Partitioning	
		Iterating/Both Processes	_
		Units Coordination	

Michelle Taub, Ph.D.

University of Central Florida

Matthew Marino, Ph.D.

University of Central Florida

TRANSLATION TO MODEL ME

We used the encouraging results from FAACT to build a universally designed video game in our ModelME project. The game contains:

Six game worlds

- Set along the learning trajectory documented in FAACT.
- Each world set in the context of a STEM/ICT career
- World contain game challenges based upon FAACT activities (tasks, representations)

Universally designed game interface, tasks, and tools Action adaptive prompts to aid self-regulation Player selected hints and "show me" features matched to each game world

The curriculum contains:

A unit of **32 lessons** with teacher and student materials Each lesson contains

- Launch of gameplay (5 minutes)
- **Gameplay** (15 minutes)
- After-game concept/skill connections (20 min)
 - Worked examples & Number Strings
 - Language routines for discourse

PLAY THE IN PROCESS GAME BUILD HERE:

https://modelmemath.org/game/

ACKNOWLEDGEMENT

This project is funded by the National Science Foundation, grant #1708329 & #194912. Any opinions, findings, and conclusions or recommendations expressed in these materials are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.