

What does it take to transition underprepared students to Algebra?

Karen D. King December 2, 2010 CADRE PI Meeting

Rhetoric around Algebra as a course

- The sooner a student takes algebra the "smarter" the child is
 - Push for all students to take Algebra in the 8th grade
 - In higher income communities, the appearance of parents "bragging" about how early their students take Algebra
- On the other hand, there is a concern about how to "get students through Algebra"

My Personal Experience

- In the 1990s, EQUITY 2000, a program of The College Board, lead to a requirement in Prince George's County that all students must take Algebra to graduate from high school
- I worked with the program to design alternatives for students underprepared for this new requirement
 - Saturday Academy
 - Double-period algebra
 - Semesterized block schedules to allow for repeats

Assumptions Then

- These measures were transitional, until students in lower grades who were prepared for the new requirements arrived in the middle grades and high school
- The requirement of Algebra for All would lead to the reduction/elimination of students underprepared for Algebra, and thus at risk for not completing high school

So, what happened?

- Algebra for All became the norm for high school graduation across the nation
- Large numbers of students still underprepared for Algebra by the 9th grade
- 15 years later, we still do not know what to do with these students

Common Strategies Currently Employed

- Extend the time students who are underprepared spend in mathematics class
 - Extra time during the school day
 - Double period algebra
 - Extra math period for remediation
 - Extra time outside the traditional school hours
 - Charter schools with Saturday hours or longer school days

Assumptions underlying the current solutions

- There are specific mathematical deficiencies that students have that need to be remediated.
- The additional time is needed to remedy these deficiencies

Accepting these assumptions, how do we organize and use this extra time effectively?

 Given the complexity of algebraic reasoning, do all students need help in the same thing?

Given the graph below, find the equation for this line.

Addressing these difficulties

- How do we diagnose these difficulties and provide just-in-time support for students' learning?
- Is just-in-time support sufficient, or are these ideas really pre-requisite?
- What is really pre-requisite and what is corequisite for algebraic learning?

Given these issues

- How can we provide these supports for students in typical classrooms with typical teachers?
 - Prior to algebra, what can we provide for teachers to support students in learning those things that are truly prerequisite in typical classrooms?
 - During algebra, how do we create realistic just-in-time diagnostics and interventions that can be addressed in a regular classroom?

Alternative Assumptions/Ways of Framing the Problem or Solutions

- Learning algebra is hard and the need for more time is not for remediation but to help students work through the difficult aspects (Dan, AI)
- We don't know what algebra really is and therefore what students should be prepared for (Mary Ann)
- Students are not motivated to learn algebra, so students and teachers do not use the time they have for learning algebra efficiently (Chris)