

- PyrEval PreprocessingReference essays and student essays
- Decomposition Parser: converts complex sentences into distinct propositions
- Latent Semantics: verbal propositions converted to 100D numeric vectors
- PyrEval Content Model Construction: EDUA algorithm
- EDUA groups vectors from different reference essays when they express the same idea
- Each "idea" group is a content unit (CU) with one to five members
- Each weight 5 CU corresponds to a Main Idea in the roller coaster curriculum
- PyrEval Application of Content Model: WMIN algorithm
- Cosine similarity of ESS vector to the vectors in a CU measures semantic similarity (in [-1,1]) WMIN constructs a graph where nodes are potential matches from ESS vectors to CU vectors
- WMIN greedily chooses the best overall alignment of ESS vectors to the content model
- PyrEval Workers in a MongoDB Flask Environment
- Notebook sends student essays to MongoDB

Early Understanding of LCE

PyrEval workers fetch the essays, process them, and send the results back to the MongoDB Notebook retrieves a checklist of matches from an essay to the Main Ideas

Current Work on Offline Automated Short Answer Assessment

PyrEval (Worker 45

- SERN: Semantic Feature-Wise Transformation Relation Network
- State-of-the-art accuracy on benchmark datasets
- What if we lack labeled training data?

 - Collect expert human labels ~400 items of short answer data Combine a related dataset (7K items) to train SFRN to moderate quality
 - On 400 additional items with expert human labels, train a logistic
 - regression when to defer to a human Use the resulting human-in-the-loop to label the remaining 3,381 items

Ultimate Potential Role of Automated Feedback in Science Learning

This work was supported by NSF DRK12 awards 2010351 (Penn State) and 2010483 (U. Wisc-Madison)