roject Description

Reasoning Language for Teaching Secondary Algebra (ReLLTT-SA) is
hree-year, Level I Exploratory project in the Teaching Strand of the three-year, Level I Exploratory project in the Teaching Strand of the
Discovery Research Prek-12 (DRK-12) program. This project is led by interdisciplinary team of faculty at the Texas State University and University of Texas at San Antonio in collaboration with academic
directors and coaches at the San Antonio Independent School Distric.

Goals:
Investigate middle and high school teachers' algebraic discourse
through written assessments and analysis of classroom observation Understand the discourse currently used by teachers when presenting algebraic concepts to students
with middle and high schol trosessional development (PD)
program with middere and high school teachers that: Addresses and enriches mathematical meanings for algebra teaching;
Defines, operationalizes, and helps teachers develop reasonin language for teaching algebraic concepts and procedures; Makes reasoning-rich discourse for algebraic problem solving
explicit and accessible
Identifies pedagogical practices that support learners' algebraic reasoning and discourse; and
Illuminates the importance of attending to students' cultural and knowledge assets thus allowing for richer engagement algebr
heses:
chers' alg
*Teachers' algebraic discourse is influenced by their mathematical meanings for algebraic concepts.
-Teachers' discourse influences the meanings that their students
develop for these concepts.
develop for these concepts.
teachers use will enhance students' opportunities to develop robust understandings of algebra.
Progress:

* Designed
Designed our Survey of Algebraic Language and Reasoning (SALR) Recruited a diverse group of middle and high school teachers over three years
adm hister the SALR for three cohorts of middle and high school Collected and analyzed the responses to SALR according to discourse framework
curriculum for a professional development (PD) course

Theoretical Background

Sur research aligns with Sfard's (2007, 2020) commognitive perspective
on mathematical teaching and learning, which assumes:
All thinking is a form of communication
To learn mathematics is to change one's participation in a discourse community
ur framework for algebraic discourse is based on the arithmetical discourse profile of Ben-Yehuda, Lavy, Linchevski, and Sfard (2005). Ben ehuda et al. analyze earners' discourse about concepts and problems arithmetic along several key dimens

Their uses of words and the extent to which these explicitly describe Their uses of mediators (symbols and visuals that represent mathematical objects)
Their endorsed narratives and apparent meta-rules for accepting and rejecting narratives, and their uses of routines.
into a single dimension
Definition: Deductive Discourse for Equation Solving
Words and mediators frequently serve to make the objects of the discourse (e.g.,values of expressions, operations, equality) and their properties explicit
\therefore Narratives about e

* Narratives about equations are endorsed/rejected by deduction from assumpity and other endorsed narratives rather than by appeal to authority
mathematical objects.

Research Questions

What beliefs do teachers have about teaching students a deductive discourse for solving linear equations? What challenges might teacher beliefs pose for teaching students how to reason deductively about equation solving?

Method

Informed by teachers' responses to survey items dealing with equations and solution ocesses, we developed an activity titled Linear Equation Talk-Throughs implemented as of 80 -hour PD for 7 middle/high school algebra teachers in 2022.
Teachers privately watched three different video talk-throughs (recorded by researcher) designed to exemplify different possible discourse features of explanations of solving linear equations.
Teacher-participants independently watched the researcher's talk-throughs; they divide drawbacks of each.
Discussions were video/audio recorded, transcripts electronically generated and verified for accuracy, and coded for any implicit beliefs about teaching and learning of equation solving that were evident.
Researchers came together to discuss the independent themes to agree on broad themes related to teacher beliefs (Our analysis of teachers' beliefs is informed by Leatham's sensible systems theory, which suggests that rather than focusing on
apparent contradictions among beliefs held by an individual teacher, we should vie apparent contradictions among beliefs held by an individual teacher, we should view
beliefs as occupying an interconnected network in which some beliefs may take precedence over others at specific times (2006).

Group		Participant	Level
		Danielle	High school
Green		Pablo	High school
		Frances	High school
Pink		Benjamin	High school
		Viola	Middle school ($\mathrm{K}-8$ academy)
Yellow		Denise	High school
		Felipe	Middle school ($\mathrm{K}-8$ academy)

Researcher Talk-Through Video Samples

Video	Description	Sample from Researcher Talk-Through (emphasis ours)
$\begin{array}{\|c} \mid \text { Video } \\ 1 \end{array}$	Focus on actions-onsymbols Duration: 1:18	"My approach here is I'm going to try to get all my x's on one side of the equation and put all the constants on the other side of the equation. Because there's already a $3 x$ on the right side of the equation, I think I want to move the term $7 x$, so it's over on the right side, and l'll leave the - 20 on the left. I'm going to take this $7 x$ here, and I'm going to change sides and change signs, so I'm going to move it over to the right and put a negative sign on it."
$\begin{gathered} \text { Video } \\ 2 \end{gathered}$	Focus on deductions about equal values Duration: 2:14	"So, I'm going to start by saying because $7 x$ minus 20 has the same value as $3 x$, if 1 add $-7 x$ to both of those values, 1 should get the same result. So, in other words, $-7 x$ plus $7 x$ minus 20 , that should be equal to $-7 x$ plus $3 x$, 'cause I took two equal values, $7 x$ minus 20 and $3 x$, and I added the same thing to each. Now, if I look at the left side of the equation, I have $-7 x$ plus $7 x$ minus $20 .-7 x$ plus $7 x$, those are additive inverses of each other, so they add to zero. That means I'm left with 0 minus 20 equals $-7 x$ plus $3 x$."
$\begin{aligned} & \text { Video } \\ & \hline \end{aligned}$	Using structure and number sense to solve by inspection Duration: 0:58	"Well, one thing I notice about this equation is I'm starting with $7 x$ and I'm subtracting 20 , and that leaves me with $3 x$. One thing that I know is that if I start with $7 x$ and subtract $4 x$, that leaves $3 x$. So that means that if I'm subtracting $7 x$ minus 20 and getting $3 x$, that means that 20 has to be equal to $4 x$. And so now I have an equation that says that 20 is equal to 4 times $x, 4$ times my number x. So I think what number multiplied by 4 gives me 20? Well, I know that 4 times 5 is $\mathbf{2 0}$, so that indicates that x is equal to $5 . "$

Research Findings

Three themes surfaced in our analysis of teachers' discussion of the researcher talk-
hroughs.
The role/importance of understanding that solving linear equations is a deductive process properties in the equation-solving process should be made explicit to students.
egarding Video 1 , which focused on actions-on-symbols rather than deduction]
Viola: It's that part that if I was new to algebra, I would not understand, "Why am I changing sides?" I'm assuming that a student who'd do this is well-versed in why I'm changing sides and why I'm changing signs. That statement assumes understanding is what I'm just saying.
Benjamin: Especially with negative numbers, and that's where they get confused. My experience, they get confused a lo
Viola: I'm going to tell you straight up; sixth grade is where it's introduced. If it's not , So, this is key, right?...So, the question, "Why does it work?" needs to be happening way down before you... Yeah, because you're too far. You're advanced.

Counter to the belief that students should be exposed to the deductive reasoning behind the algebraic steps in equation solving as they learn the steps to solving, Danielle posited that introducing properties too early may confuse learners.
Danielle: But that's after they already have learned to solve equations in ninth nielle: But that's after they already have learned to solve equations in ninth
grade, in algebra one. Then we're doing it in geometry, we're saying, "Okay, thes grade, in algebra one. Then we're doing it in geometry, we're saying, "Okay, these
are what these properties are called now to practice those justifications. "So, from that standpoint, but again, doing that not on the first time they're learning this. It's like, the second time. So, I love the use of properties, but I agree, I think it would be confusing to the people learning for the first time, and that's what I thought, too.

The estimation of students' capacity to understand solving linear equations as a deductive process
 suggested that a deductive approach would not be suitable for all students
Some teachers distinguished those students who would be confused by "too Some teachers distinguished those studens who would be confused by "too deductive reasoning behind the problem-solving process
ewl view]

Frances: It's too many steps. And then, I would have simplified the right side instead of taking it to the next step. I would have simplified as I went to the next step on
both sides. And he would simplify one side, then bring down to another one botherstend he would simplify one side, then bring down to another one, another step, and then simplify on the first side. He wouldn't simplify it as he would go along; he would wait, go to the next step, next step, next step.
Danielle: Yeah.
Frances: Like, step one, step two, step three. My kids would get confused. Danielle: Yeah.
Frances: Yeah, my kids would get confused; too many steps. I already know that, too many steps. Now, the ones that are real bright, they would catch on real easil, But you have to realize you have to accommodate everybody in the class.

The perception of a difference between those more experienced in algebraic reasoning (teachers) and novices to algebraic reasoning (students) in terms of the potential to understand and engage in deductive algebraic discourse

Regarding Video 3 , which relies on structure and number sense]
Felipe: That one [Video 3], I think is the more complex of them all. Well, no, not for us. For them to rationalize and understand because to them, when they see $5 x$,
they generally, think would see it as two units, 5 and x. Whereas we can see it o one thing that we can manipulate

Discussion/Future Research

*Participants' analyses of researcher talk-throughs suggested that hey saw potential benefits in the ductive er the standard solution process siven in video
oriented approach described in Video 3.

Felipe and Denise suggested that they would use an explation process before showing them "eavien" to the solution process before showing them an "easier" appro
Danielle suggested that she would defer the in-depth explanation in Video 2 until her students began grappling with deductive reasoning and formal proof in geometry. While Viola and Benjamin stated that they found the "solving by inspection" approach in Video 3 to be "a
fabulous tool", Denise and Felipe hypothesized that this method would be harder for students to understand and suggested offering it to students only as a "fun challenge."
If there is strong consensus that deductive explanations and structure-oriented approaches for solving equations are potentially
useful for students, why are actions-on-symbols explanations of usefulf or stadents, why are actions-on-symbois explanation
solution processes so prevalent in teaching, as evidenced by reviews of curricular materials and our own teachers' recorded talk-throughs?
In this study we have discovered two such families of beliefs:
A deductive perspective on equation solving is likely to prove difficult for students (especially those who have been the target
deficit attributions, such as stydents in an intervention course) deficit attributions, such as students in an intervention course) Explanations that teachers find approachable (and in fact elegan

Given that many teachers feel a strong sense of commitment to engaging all learners in successful mathematical practice, it is understandable that an explanation or approach that appears likely

One goal of our project is to persuade teachers that it is feasible and worthwhile to engage all learners in deep and conceptually coherent algebraic reasoning.

References

Ben-Vehuda, M., Lawv, I, Linchevski, L., \& Sfard, A. (2005). Doing wrong with words
What bars students acess What bars students' access to arithmetio
Mathematicics Education, $36(3), 176-247$ Leatham, ...R. R. (2006). Viewwin mathematics teacheres' be
Joumal of
 Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Makin
sense of mathemitics earning roma a commognitive standpoint. The Journal of
the earring sciences, 16(4), $565-613$. Sfard. A. (2008). Thinking as communicating: Human development, the growth of
discourses, and mathematizing. Cambridge, UK: Cambridge Univesity Press.

Acknowledgment

This work is supported by the National Science Foundation through the Discovery Research Prek-12 (DRK-12) program (Award
\#1908825). Any opinions, findings, and conclusions or \#1908825). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the aut
and do not necessarily reflect the views of the National Science and do not necessarily reflect the views of the National Science
Foundation.

TEXAS - STATE

