

Introduction

Computational thinking (CT) practices, such as abstraction, pattern recognition, and problem decomposition, are embedded in virtually every STEM discipline. Yet, most existing K-12 CT education efforts focus on computer science courses, which are only taken by a fraction of students (Computer Science Teachers Association, 2019). Therefore, there is a critical need to integrate computing and CT into one or more of the other STEM disciplines to demonstrate the inter-disciplinary, fundamental nature of CT and to broaden access (NGSS Lead States, 2013). The current project aims to incorporate CT within two STEM disciplines: engineering and biology.

The engineering design process has many conceptual and practical commonalities with CT practices, such as those outlined by Weintrop et al. (2016).

Developing CT through Neural Engineering

Image credit: openbionics.com

Neural engineering, the application of engineering design principles toward solving problems related to the nervous system, provides a novel, interdisciplinary, and real-world context for high school students to develop their CT.

Fostering Computational Thinking Through Neural Engineering Activities in High School Biology Classes

Ido Davidesco¹, John Settlage¹, Christopher Rhoads¹, Aaron Kyle², & Bianca Montrosse-Moorhead¹ ¹ University of ¹

Investigating a complex system as a whole

Understanding the relationships within a system

• Develop and field-test a neural engi

- Adapt a node-based programming
- Investigate how student CT skills an engineering design activities.

Mod

Lesson	Driving questions	
1.1	What is a bionic arm?	IntCr
1.2	What controls our movement?	• Re • Co mo
1.3	How does nerve injury affect movement?	 Inv mo Cr
1.4	How do muscles work?	• Ex
1.5	How do you control a robotic gripper?	• De

Modu

Lesson	Driving questions	
2.1	How does touch impact movement?	• M
2.2	How do we perceive touch?	 He Ce pe
2.3	Can robots sense objects?	• De
2.4	Putting it all together	• Ca

- meaningful connections between the unit and their day-to-day lives.

Aldemir, T., Davidesco, I., Kelly, S. M., Glaser, N., Kyle, A. M., Montrosse-Moorhead, B., & Lane, K. (2022). Investigating Students' Learning Experiences in a Neural Engineering Integrated STEM High School Curriculum. Education Sciences, 12(10), 705. Bondaryk, L. G., Hsi, S., & Van Doren, S. (2021). Probeware for the modern era: IoT dataflow system design for secondary classrooms. IEEE Transactions on Learning Technologies, 14(2), 226-237. Computer Science Teachers Association, Code.org Advocacy Coalition, & Expanding Computing Education Pathways Alliance. (2019). 2019 State of Computer Science Education. NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.

f Connecticut ² Duke University	
Project Goals	
gineering unit to support CT in high school students.	• F
software to support engineering design activities.	r
and attitudes towards STEM change as they participate in	• F
	C
	- F
dule 1: Motor Control	
Key activities	analy
troduction of the anchoring phenomenon	
reating an initial model of how bionic arms work	Engir
eaction time measurement	
onstructing a model of body systems that are involved in voluntary	
lovement	
vestigating how neurological conditions could impact limb	
novement reating a computerized model of limb movement	
reating a compatenzea model of into movement	
xploration of muscle electrical activity (EMG)	
	7
esian challenge #1: A muscle-controlled grinner	
ule 2: Tactile Feedback	A pref
Key activities	throug
leasuring reaction time with and without gloves	Sensor
	EMG - Lon
omunculus mapping	628
onstructing a model of body systems that are involved in touch	+
esign challenge #2: Can you grab an egg without cracking it?	1

ase studies

Preliminary Findings

Students appreciated the authentic nature and real-world value of engineering and technology.

• The experience of measuring one's own muscle activity and the use of this data to control the movement of a robotic gripper was engaging and helped students make

• In some cases, students' understanding of the underlying biological phenomenon (e.g., interaction of body systems and muscle contraction) was limited. • Teachers needed additional support to effectively integrate technology and programming in their instruction.

This material is based upon work supported by the National Science Foundation under Grant No 2101615