Exploratory Evidence on the Factors that Relate to Elementary School Science Learning Gains Among English Language Learners

F．Chris Curran，PhD，Mark Pacheco，PhD，Lelydeyvis Boza，Amber Deig， Katharine Harris，\＆Tiffany S．Tan

Background and Research Question

Prior work has found that students whose primary home language is not English tend to score around half a standard deviation lower in science through elementary and middle school than those whose primary home language is English （Morgan et al．，2016）．
－What is more，for Hispanic and Asian students，EL status appears to be the most significant predictor of why their elementary school achievement lags White student performance to a greater degree in science than in mathematics or reading（Curran \＆Kitchin，2019）．
－Research question：
－How do science test performance trajectories vary across and within EL student groups in elementary school？
－How do access to school，teacher，and classroom level science and EL inputs vary across and within EL student groups in elementary school？
－Which school，teacher，and classroom level science and EL inputs are predictive of greater science test performance gains in elementary school？

Theoretical Framework

Data and Methodology

Early Childhood Longitudinal Study of 2010－11（ECLS－ K：2011），a nationally representative longitudinal study of kindergartners in 2010－11 through fifth grade in 2015－16． School，teacher，and parent surveys alongside standardized science assessments of students．

Focused on the following groups：
1）Whether a non－English language was spoken in the home－our definition of an ML（parent report）
2）Whether a non－English language spoken at home was the primary language at home（parent report）；
3）Whether students received formal ELL services at school（teacher report）；and
4）Whether students＇non－English language was Spanish or a less common language（parent report）

Results

How do science test performance trajectories vary across and within EL student groups in elementary school？

Figure 1．Elementary Science Learning Trajectories of ML Students
Source：Us DoE，NCES，Eat，
unpubished calculations．

Figure 2．Elementary Science Learning Trajectories of ML Students Relative to Reading and Mathematics Source：US DOE，NCES，Early Childhood Longitudinal Study of 2010－11，Previiusly Source：US DOE，NEEE，Eary
unpubished calculations．

How do access to school，teacher，and classroom level science and EL inputs vary across and within EL student groups in elementary school？

	sulsmole	westrony	Noremelen	crestrime	emer	Emelthene	Norchestane	－ulsemes	wes	Smant	norsments	
	$\underbrace{\text { ata }}_{\substack{129 \\ \text { atan }}}$		$\xrightarrow{\text { a } 2979}$		${ }_{\substack{13,4 \\ 1229}}^{19}$				（12e）		cose	
	${ }_{6 s 8}$	${ }^{63} 3$	${ }^{2150}$	${ }_{6}$ ses	133	6895	$7{ }^{2068}$	7	\％985	2at	6 6as	\cdots
	（in		（ex		（in		（in				（osen	。
ontemammeseamememanay	$\xrightarrow{1129}$		（103）	（10）		（1as	（123）			$\xrightarrow{\text { liter }}$	（10，	－
orneatesmenegsame		cose								cis		
	（0，9e）	（0299					（0209	${ }_{\text {cose }}^{\text {gima }}$		$\xrightarrow{\text { O2，}}$	（oisi	
（timem												
						（ond		coick	cos			
		（oxis	（oas）	（10as）	coin		coion		coid	coid	come	
sors sememesemecemy			${ }_{\text {cosem }}^{\substack{0}}$	coin		cosem	cose	$\xrightarrow{\text { ander }}$	comb	comb	coide	
weaneminymas	）	）	）	${ }_{\text {dom }}^{\text {doma }}$	${ }_{\text {dom }} 0$		dome	aid	${ }_{\text {a }}$		）	
	（00999	（002）	（0027）	（1023）	（0035	（10059	（0027	（1037）	${ }^{(0,2)}$	（0029	（10909	
				（0）				coil	coil		cision	
Hetin		$\xrightarrow{\text { coiag }}$		and		${ }_{\text {a }}$						－
						边	cose	cose	cose	coicle	coicle	
mentimesem moassimm cass	边		（0as		（0as）	（0ase	（0，			cois	atay	－
	（oict	（osem	（osem	（ous	（omel	（ond					（oick	
manmmes	cose	（oan）	（tame	（oanl	（oaty			$\xrightarrow{\text { loarl }}$		（oant	（oas）	
（cemematn	deat	${ }_{\text {cose }}^{\text {doas9 }}$	${ }_{\text {a }}^{\text {anden }}$	${ }_{\text {a }}^{\text {a }}$	$\xrightarrow{\text { loas }}$	$\xrightarrow{\text { a }}$	${ }_{\text {a }}^{\text {a }}$	cos	coicle	cose	（ond	
	（eam	（enter			（ondem							
ammase			（osem		（oas）	（1003	（eas）		come		（oas）	
		（ans	（1002）				coich				为	
	（0029	（0080）	（ams）	（0as）	（0052）	（oses）	（0as9	（1oss）	（10000	（1093）	（ases）	
verememe	523	${ }_{524}$	soes	${ }^{487}$	515	sm1	${ }_{\text {sas }}$	5200	${ }^{4976}$	${ }_{537}$	${ }^{4665}$	
mand	coicle	${ }^{\text {and }}$	（tame	（is）								
Semede	${ }_{\substack{0120 \\ 36818}}^{\substack{1020}}$		（10，	$\underset{\substack{0179 \\ 3,69}}{\substack{120}}$					${ }_{\substack{\text { a } \\ 3,51}}^{10271}$			
	${ }^{(0,489}$	${ }^{10.656}$	${ }^{102000}$	${ }^{10227}$	${ }^{10323)}$	${ }^{102000}$	${ }^{(0297)}$	${ }^{102984}$	${ }^{1029}$	${ }^{122000}$	${ }^{102559}$	
Sememememol	ama	（oand	（1000	（039）	（1030	（103）	（0an）	［0asd	（1030	（1039	（ome	

Results
Which school，teacher，and classroom level science and EL inputs are predictive of greater science test performance gains in elementary school？

	Nocontust			cisteme	Reasins er	Alcosates
Gonet leal		（0as3）	（oases！	（10．30］	coin	（10399，
mesaraion	come	coin	come	coind	（100ss）．	lomen
				（ambd		coick
	$0^{0.24 . \cdots}$	－2，38．．．		－0，08．．．		
Graseleent					（ooms	（10）
measation		coin	$\xrightarrow{\text { cooces9 }}$ cose．	（oomen	coin	（10230）
	$\xrightarrow{\text { coung }}$	$\xrightarrow{101919}$	$\xrightarrow{100125}$	$\xrightarrow{\text { loin21 }}$（602）	（1099）	（10001）
		．0635．＊	． 0 ¢77．．．	－6，5．．．		
demel	（0，0）	cose	$\substack { \text { logn } \\ \begin{subarray}{c}{\text { arzen }{ \text { logn } \\ \begin{subarray} { c } { \text { arzen } } } \end{subarray}$	（10093）	${ }_{\text {lol }}^{10}$	（1020
measation	comb	（lams）	（10039！	lomen	loty	lock
	coicle	（10029	（10011）		（oin）	（omin）
	（omb	（oineon	$\xrightarrow{\text {（10739］}}$（083）		${ }^{\text {logen }}$	
	（0，0es）	（omen	（oond	（0093）	$\substack{\text { lois9 } \\ \text { Oores }}$	$\substack{\text { loino } \\ \text { Ooind }}$
		（lotin）	（10212）	（oorin）		（1an

Summary

－Elementary science test score trajectories vary as much across ML subgroups as they do between MLs and non MLs．
－There are differences in test score gaps in science compared to math and reading，though not for al subgroups．
MLs who speak a language other than Spanish close the
science test score gap by the end of elementary school．
Science inputs measured in the ECLS are relatively evenly distributed across MLs，non－MLs，and ML subgroups Linguistic supports are not．

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No．2100419．Any opinions， findings，and conclusions or recommendations expressed in this material are those of the author（s）and do not necessarily reflect the views of the National Science Foundation．

References

Curran，F．C．，\＆Kitchin，J．（2019）．Why are the early elementary race／ethnicity test score gaps in science larger than those in reading or mathematics？National evidence on the importance of language and immigration context in explaining the gap－in－gaps．Science Education，103（3），477－502．

Morgan，P．L．，Farkas，G．，Hillemeier，M．M．，\＆Maczuga，S． （2016）．Science achievement gaps begin very early，persist，and are largely explained by modifiable factors．Educationa Researcher，45（1），18－35．

