

EarthX Overview

Synopsis:

EarthX is a collaboration of school district teachers and administrators, scientists and education researchers helping bring Earth science and compelling environmental phenomena into high school Biology, Chemistry, and Physics courses in Baltimore. *EarthX* is developing, testing, and refining beginning of course, embedded and unit assessments that will provide near-real-time feedback to teachers and students, in support of 3D teaching and learning. Assessment results will be used in the project's professional learning activities and supports, and to answer our research questions about teaching and learning.

EarthX Hypothesis and Questions

Our hypothesis:

Earth Science (ES) and life and physical sciences are

complementary. When provided sustained opportunities to engage in three-dimensional learning experiences, in an integrated Earth science and life or physical science context, students will improve in their ability to demonstrate the coordination of disciplinary core ideas, scientific practices, and crosscutting concepts when solving problems and developing explanations related to scientific phenomena.

Our questions:

Overarching:

• How can partner collaboration leverage data on student performance and teacher practice to improve NGSS-aligned three-dimensional (3D), phenomenon-based, rigorous and responsive teaching and professional development for Earth science across the disciplines?

About teachers:

- How does teachers' understanding and implementation of phenomena-based, 3D instruction change over a multi-year extended professional learning experience?
- How does supported reflective practice shape teachers' classroom instruction?
- How is teacher instruction shaped by phenomena-based, 3D professional
- learning experiences?
- How is teacher instruction shaped by analysis of student learning artifacts and data?

About students:

• How do students' 3D, Earth science performances improve over the course of a year and over the Biology, Chemistry, Physics sequence in response to teachers' repeated use of 3D assessments to guide their instruction?

EarthX Advisory Board

Erin Furtak, University of Colorado at Boulder **David Hammer,** Tufts University Stefanie Marshall, University of Minnesota Vicente A. Talanquer, University of Arizona Michael Wysession, Washington University Mary Weller, Maryland State Department of Education Martin Schmidt, McDonough School Maceo Cooper, Baltimore City Public Schools

EarthX – Advancing Earth Science Instruction Across High School Life and Physical Science

Alan R. Berkowitz, Angela Hood, David Fischer - Cary Institute of Ecosystem Studies Kevin Garner, Kia Boose - Baltimore City Public Schools Jonathon Grooms, Lauren Browning - George Washington University Karen Draney, Smriti Mehta, Jessica Bean – University of California Berkeley **Beth Covitt – University of Montana Carolyn Parker – American University**

Toby (E) thinks CO₂ concentrations will decrease by half (to around 200 ppm) because cutting emissions by 50% will lead to CO₂ concentrations decreasing by 50%.

Which student's answer do you agree with the most? Explain why you think their answer provides the best prediction for what would happen to atmospheric CO_2 concentrations over the next 50 years.

Teachers identify assessment and teacher guide design, implementation and support specifications. Land

PUBLIC SCHOOLS

WATER (UALITY	INVES OF A LOSS
ABIOTIC FACTORS	SITE 1 SITE 2	BI
POOR FAIR GOOD SURFACE	5.6 0.5	BIRD SPECI
WATER TEMPERATURE SURFACE F = (1.8 x C) + 32 C = (F - 32)/1.8 BOTTOM	21.7	
ALINITY SURFACE BOTTOM	156	FISH SPECIE
TURBID ITY (SECCHI DISK DEPTH)	150cm	Att Prove
PH ACIDIC NEUTRAL BASIC 0 2 6,5 7 8.2 12 14 POOR GCCA POOR	7.5	OTHER SPECI
OPPM 10 1.5+ PPM GOOD FAIR POOR		Neil (
OPPM 0.1 0.15+ PPM GOOD FAIR POOR	.45 mg	A A A A A A A A A A A A A A A A A A A

EarthX Goals and Objectives

Goal 1. Build and nurture a strong Research-Practice Partnership

Goal 2. Develop and test disciplinary and cross-disciplinary professional learning (PL) strategies for supporting effective Earth science teaching in high school Biology, Chemistry, and Physics classes.

Objective 2.1 - Develop intensive and extensive PL strategies through several cycles of implementation and improvement.

Objective 2.2 - Collect data on teachers' practices and classroom discourse for: 1) use in PL, 2) assessing the impact of PL on teacher practice for improving PD, and 3) scale-up and sustainability at the district level. Objective 2.3 - Address our teacher research questions about teacher practice.

Goal 3. Develop learning progression-aligned, embedded and summative 3D assessments of student performance that can support rigorous and responsive teaching about phenomena in the local-to-global environment at the interfaces between Earth science and Biology, Chemistry, and Physics.

Objective 3.1 - Develop assessments through several cycles of implementation and improvement.

Objective 3.2 - Support use of assessments for informing 1) rigorous and responsive instruction, 2) PL strategies and supports, and 3) scale-up and sustainability of District student assessment.

Objective 3.3 - Address our student research questions about students' Earth science learning across time.

Goal 4. Bring EarthX strategies to scale, resulting in transformative, phenomena-based 3D instruction across the District.

> Objective 4.1 - Document how data on student performance, teacher practice, and PL outcomes are used by the District for district-wide adoption of innovation.

Objective 4.2 – Document what supports are needed at the teacher, school, and District levels to implement EarthX effectively across the District. Objective 4.3 - Examine research questions about the sustainability of the EarthX innovations.

EarthX Assessment Targets x Courses

		0	
opic	Biology	Chemistry	Physics
al ge	Fossil fuel formation	Heat capacity & albedo of urban materials	Geoscience data for predicting climate
	Baltimore resource use past, present, future		
ral irces	Soil quality in different Baltimore neighborhoods		Baltimore then & now – energy sources & impacts
er ty	N vs. P sources & inputs to receiving waters (eutrophication)	Ocean acidification, oyster growth & decay	Forces & movement of streambed rocks & sediments
		Weathering of urban surfaces & stream chemistry	
air & and	Carbon cycle & trophic structure of ecosystems	local & global weather systems driven by density and pressure	Physics of radiation transmission, reflection & absorption
	Oxygenation of the atmosphere by plants		
lforms	Water budgets & pathways in local watersheds	Maryland igneous rocks dated using half- lives of radioactive isotopes in them	Meteor impact & formation of Chesapeake Bay
	Formation of soils by land plants, animals, microbes	Plate tectonics and Baltimore's earth history	S and P waves reveal the structure of the inner earth
RF	ECITY	INS	

