

CADRE Learning Series: Using Video in DRK-12 Research

January 27, 2023

Joanne Lobato San Diego State University

Overview of our NSF Project

Developing and Investigating Unscripted Dialogic Mathematics Videos Co-PI: John Gruver, Michigan Technological University

Purpose

- Create an alternative type of math video that features pairs of secondary school students engaged in dialogue as they work together to tackle challenging math problems
- Conduct a series of research studies that investigate what and how other students learn from the videos

Motivation for Project MathTalk

The COVID-19 pandemic demonstrated the tremendous need for high-quality online instructional videos

".... videos mostly present procedures, factual information and worked

examples, without explaining why procedures work, unpacking mathematical

relationships, or developing mathematical meanings" (Klinger & Walter, 2022)

Voices of students are largely missing in math videos for K-12 students learning

Students rap formulas

Lobato, Walters, & Walker (2016)

There are some online math videos that show students communicating their mathematical ideas

but they were filmed for teachers not for student learning

Development Goal of Project MathTalk

Create videos for Grade 7-12 students that feature pairs of students who

- explain and discuss their ideas
- convey authentic confusion
- persist to resolve mathematical struggles

VIDEO UNITS				
Proportional Reasoning		Parabolas		Previous Grant
Algebraic Expressions	21-6	Exponential Functions		Current Grant
Multiplying Binomials	a b a a ² ba b ab b ²	Trigonometry		
Solving Linear Equations		Logarithms		
Each unit has about 7 lessons & 40 short videos				

Developing Alternative Models for Online Videos Can Be Important to Other Research Programs

Research on Flipped Classrooms

- Videos are typically expository and procedural
- o Concerning because such videos can
 - reinforce common student misconceptions (Muller, 2008)
 - restrict the focus of subsequent classroom conversations (Cargile & Harkness, 2015)

Developing Alternative Models for Online Videos Can Be Important to Other Research Programs

Research on Teacher (preservice and inservice) Learning

- Having access to the same students' learning over time and in a way that you can see their work, can have affordances for teachers
- Preservice secondary teachers using Project MathTalk videos developed deeper mathematical understanding and learned to decenter (distinguish student reasoning from their own and take on student perspectives); Walters (2017)

Design Decisions

Design Decisions

Use UNSCRIPTED rather than scripted student dialogue

Example from a MathTalk Video

- 3 minute video
- Algebraic Expressions Unit

Game App Task

Three friends want to buy game apps. Each app costs the same amount:

\$ **Chown**

How much will they spend altogether?

Danyal	Suado	Kiaan	
Gar Gam Game App	Game Al Game App	Gar Ga Gan Game App	
3 apps	2 apps	4 apps	

Unscripted Dialogue in Project MathTalk Videos

- Captures authentic student problem solving
- Often includes displays of confusion
- We worried that viewers would find this confusion overwhelming
- But high schools students, in general, valued seeing the confusion of peers (Lobato & Walker, 2019)
- Believed they were struggling and learning together

- 1 minute video
- Had just watched a video in which the students were quite confused
- Researcher asks if they would prefer to have videos without confusion
- They prefer "the confused ones"
- Listen for student to share how she feels like an "alien" in her math class when she's confused

"When I get really confused, I get isolated, like I'm the only one, but then knowing that she's [Sasha's] confused too ...we're both confused."

Design Decisions

Developed a protocol for filming remotely

Design Decisions

The inscriptions from the video participants need to be displayed clearly for other students to learn from them

Explain &verything

Lessons Learned about Using Video in Research & Development

Lessons Learned

- 1. The personality and nature of the relationship between the video participants matter
- 2. After focus testing different video prototypes, we learned that **annotating** and **summarizing** key parts of student work in the videos is important

Example from a MathTalk Video

- 1 minute video
- Parabolas Unit

Project MathTalk Team

John Gruver, Co-PI Mike Foster, Doctoral Student Isabel White, Doctoral Student Mike McKean, Technical Specialist Alicia Gonzales, Post-Doctoral Researcher

Project MathTalk is supported by the National Science Foundation through Awards DRL-1416789 and 1907782. The views expressed in this presentation are not necessarily those of the NSF

References

- Cargile, L. A., & Harkness, S. S. (2015). Flip or flop: Are math teachers using Khan Academy as envisioned by Sal Khan? *TechTrends*, *59*(6), 21-28.
- Klinger, M., & Walter, D. (2022). How Users Review Frequently Used Apps and Videos Containing Mathematics. *International Journal for Technology in Mathematics Education*, 29(1), 25-35.
- Lobato, J., & Walker, C. (2019). How Viewers Orient Toward Student Dialogue in Online Math Videos. *Journal of Computers in Mathematics and Science Teaching*, *38*(2), 177-200.
- Lobato, J., Walters, C., & Walker, C. (2016, April). Beyond the demonstration of procedures in YouTube-style math videos. Paper presented at the NCTM Research Conference, San Francisco, CA.
- Muller, D. (2008). *Designing effective multimedia for physics education* (Doctoral dissertation, University of Sydney Australia). Retrieved from <u>http://www.physics.usyd.edu.au/super/theses/PhD(Muller).pdf</u>
- Walters, C. D. (2017). The development of mathematical knowledge for teaching for quantitative reasoning using video-based instruction. (*Doctoral dissertation, San Diego State University and University of California at San Diego*). Retrieved from https://escholarship.org/uc/item/8484s8zf