Changes in elementary teachers’ perceptions and facilitation of argumentation throughout year-long participation in professional learning

Matthew Wilsey, Coralie Delhaye, Melissa Collins, Sara Allan, Emily Reigh, Hilda Borko, Jonathan Osborne
Background & Rationale

- Argumentation is an key scientific practice (e.g. NRC, 2012), and there has been a recent emphasis on the practice (e.g. Tzung-Jin et al., 2020)

- Yet, classroom argumentation remains rare (Banilower et al., 2018; Osborne, 2010), particularly in elementary classrooms (Davis et al., 2006)

- Thus, there remain an opportunity to better understand and support teachers’ capacity in facilitating classroom argumentation (Zembal-Saul & Vaishampayan, 2019)
Partnership

Design-based Implementation Research Approach

Professional Learning Team

Research Team

School District
Partnership

Design-based Implementation Research Approach

Professional Learning Team

Research Team

School District

PL model adapted for the district

PL for TLs at district level

TLs implement adapted PL program

Shifts in teacher practice (non-TLs)

Improved competency in students
Conceptual Framework

Practices to Support Argumentation in Elementary Science

IPT Project

Practice-based Professional Learning

Teacher Knowledge Bases for Argumentation

Science Discourse Instrument

<table>
<thead>
<tr>
<th>Teacher Practices</th>
<th>Student Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ask</td>
<td>Explain/Claim</td>
</tr>
<tr>
<td>Press</td>
<td>Co-Construct</td>
</tr>
<tr>
<td>Link</td>
<td>Critique</td>
</tr>
</tbody>
</table>

(e.g. Alexander, 2020; Franke et al., 2015; Michaels & O’Connor, 2012; Mercer & Howe, 2012)

(e.g. Ball & Cohen, 1999; Jackson & Cobb, 2013)

(e.g. Carlson & Daehler, 2018; Zembal-Saul & Vaisharpayan, 2019)
Research Questions

1. In what ways did teachers’ practice of facilitating classroom argumentation change during the first year of the project?

2. In what ways did the teachers’ perceptions of classroom argumentation change during the first year of the project?
Methods: Data Sources

- 10 Elementary teachers
- Classroom video & survey data
Methods: Data Analysis

Video Data
- Segmented for whole class discussion
- Coded with SDI2
- Two coders for each video segment
- Linear regression analysis

Survey Data
- Attitudes toward Argumentation scale
- Confidence in Teaching Science scale
- No test for significance (small N)
- Inductive coding of open-response items

<table>
<thead>
<tr>
<th>Science Discourse Instrument</th>
<th>Teacher Practices</th>
<th>Student Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ask</td>
<td>Press</td>
<td>Explain/Claim</td>
</tr>
<tr>
<td>Press</td>
<td>Link</td>
<td>Co-Construct</td>
</tr>
<tr>
<td>Link</td>
<td></td>
<td>Critique</td>
</tr>
</tbody>
</table>
Findings: RQ1

All changes at T2 and T3 are significantly different than at T1
Findings: RQ1
Findings: RQ2

Mean Composite Score:

- **Attitudes toward Argumentation** scale:
 3.4 → 4.55 (on a 5-point scale) after SI;
 4.6 at the end of the academic year

- **Confidence in Teaching Science** scale:
 2.97 → 3.52 (on a 5-point scale) after SI;
 3.4 at the end of the academic year
Findings: RQ2

I'm excited to teach my students argumentation! They love to talk and to share their ideas, and it is exciting to be able to give them a framework in which they can make those ideas more relevant and reach deeper with their ideas, as well as learning to share in a way that lets students learn from each other more effectively.

- Opened-ended Response on Post-SI Survey
Implications

- Practice-PL can have impact
 - Significant initial changes, but then leveling off
- Contingent and dialogic aspects of argumentation remain challenging
 - Planning v. in the moment decision-making
- Mechanism of change
 - PL analysis
Thank you!

Questions and further discussion:
Matthew Wilsey (mwilsey@stanford.edu); Coralie Delhaye (cdelhaye@stanford.edu); Melissa Collins (macollins@berkeley.edu); Sara Allan (sara.allan@berkeley.edu); Emily Reigh (evreigh@stanford.edu); Hilda Borko (hildab@stanford.edu); Jonathan Osborne (osbornej@stanford.edu)

This work was generously funded by the National Science Foundation.
<table>
<thead>
<tr>
<th>Quality of practice</th>
<th>Emerging</th>
<th>Proficient use of the</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations without explanation (e.g. I think that the hot water is rising to the top of the beaker.)</td>
<td>Observations with explanation (e.g. I think that the hot water is rising to the top of the beaker. The cold water is sinking to the bottom of the beaker because it is more dense.)</td>
<td></td>
</tr>
<tr>
<td>Claims without evidence or reasoning (e.g. I don’t think that would happen during the day, only at night.)</td>
<td>Claims with appropriate evidence/reasoning (e.g. I think that seeds are alive because they turn into something living.)</td>
<td></td>
</tr>
<tr>
<td>Incomplete or irrelevant explanations.</td>
<td>Extended explanations with reasoning (e.g. Since the land heats up faster than the ocean, the air above the land will get heat up and rise.)</td>
<td></td>
</tr>
</tbody>
</table>

Student Practice: Explain/Claim

<table>
<thead>
<tr>
<th>4</th>
<th>Students consistently offer extended explanations using science ideas and reasoning appropriate to the discipline OR consistently make claims that are supported with evidence/reasoning.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Students occasionally offer extended explanations using science ideas and reasoning appropriate to the discipline OR occasionally make claims that are supported with evidence/reasoning.</td>
</tr>
<tr>
<td>2</td>
<td>Students rarely make claims that are supported by evidence/reasoning OR rarely give extended explanations. Alternatively, students’ contributions are best typified as emergent.</td>
</tr>
<tr>
<td>1</td>
<td>There is no evidence of student effort to engage in emerging or proficient use of the explain/claim practices.</td>
</tr>
<tr>
<td>0</td>
<td>No class discussion OR class discussion was not related to science.</td>
</tr>
</tbody>
</table>