Discovery Research K-12 (DR K-12) Program

Division of Research on Learning in Formal and Informal Settings

Program Solicitation: NSF 13-610

Important Dates

Full Proposals December 6, 2013

October 16, 2014

Overview of the Session

- Describe the DRK-12 Program & Project Expectations
 - > 4 Strands
 - > 2 Proposal Types
 - > Relationship to Common Evidence Guidelines
- Round 1 of Questions
- Proposal Preparation and Review Process
- Round 2 of Questions
- Further Information and Resources
- Final Questions

Goal of the DR K-12 Program

Enhance STEM learning of teachers and students, preK-12, through research and development of innovative resources, models and tools (RMTs)

- Catalyze new approaches
- Develop students' 21st century skills
- Provide multiple pathways/resources

DRK-12 Projects

- Build on fundamental research and STEM education development literature and practice
- Have rigorous research and development plans
- Reflect the needs of an increasingly diverse student and teacher population

DRK-12 Projects

- Contribute to knowledge about learning and development
- Large R&D projects are expected to produce RMTs that have been tested and that could be used by others

DRK-12 Research and Development Strands

- Assessment
 Learning
 Teaching
- 4. Implementation

<u>Assessment Strand</u>: Propose to research and develop assessments of student and teacher practice, concepts, and skills

DRK-12 is particularly interested in assessments that:

- Measure difficult disciplinary, cross-cutting or emerging STEM practices and concepts
- Provide information that can be used to modify instruction
- Use technology in new and innovative ways

Proposals in this strand must have appropriate plans to ensure validity and reliability

Learning Strand: Propose to research and develop RMTs for students

- Help students learn emerging, cross-cutting and important practices and concepts in STEM
- Engage students in meaningful scientific data collection, analysis, visualization, modeling and interpretation
- Use technology in innovative ways
- Are based on sound learning theory and have appropriate developmental designs

Learning Strand: Propose to research and develop RMTS for students

DRK-12 is particularly interested in proposals that

- Focus on new areas of learning not part of the traditional curriculum (i.e. engineering education, computational thinking, systems thinking)
- Effectively engage all students
- Have an explicit role in classrooms

<u>Learning Strand</u>: Proposals may focus on

- RMTs that could be implemented in current educational settings
 - Proposals need to show how this could enhance learning
 - > Proposals must demonstrate how the focus is related to important current challenges
- RMTs that challenge current practice and envision a fundamentally different learning environment

<u>Teaching Strand:</u> Propose to research and develop RMTs to help teachers provide high quality STEM education

- Innovative models to recruit, develop, induct, and retain STEM teachers
- Resources for helping pre- and in-service teachers develop content and pedagogical knowledge and skills
- Tools for sharing teaching expertise within schools, districts and states
- Tools to help teachers customize instruction

Teaching Strand: Propose to research and develop RMTs to help teachers provide high quality STEM education

- Full proposals must have appropriate research designs that explore the relationships among teacher knowledge, teacher practice and use of the RMT, and student learning.
- Pre-service projects are encouraged but funding cannot be used for tuition for undergraduates.

Implementation Research Strand: Propose to research the factors that contribute to successful highquality innovations

- Proposals that examine how a community of practice (researchers, developers and practitioners) forms to identify, refine or develop appropriate RMTs
- Proposals that investigate the factors that enhance or impede the implementation of an RMT to determine what works for whom and under what conditions

Implementation Research Strand: Propose to research the factors that contribute to successful high-quality innovations

- Proposals that study the conditions necessary for implementation of RMTs in wider contexts
- Proposals that develop evidence of the efficacy or effectiveness of a previously developed RMT

Types of Proposals

- Exploratory
- Full Design and Development

Exploratory Proposals

- Undertake early research and development of innovative RMTs or substantively revise an existing RMT.
- Establish plausible hypotheses for research and development activities
- Develop appropriate measures for assessing the RMT including ways to determine appropriate levels of technical quality

Exploratory Proposals

- Produce empirical evidence to inform further research and development
- Are consistent with the Early Stages and Exploratory type of research and development in the *Common Guidelines for Educational Research and Development*

Full Design and Development

- Build on promising projects funded by NSF or others where there is evidence of effectiveness from small studies
- Build on solid theories of learning
- Have plans for creating, validating or using existing instruments to assess learning
- Have appropriate research designs and analysis plans to assess learning

Full Design and Development

- Result in useable products that have evidence of feasibility and effectiveness
- Are expected to contribute to theory and lead to peer reviewed publications
- Are consistent with the Design and Development type of research and development in the *Common Guidelines for Educational Research*

Conferences, Workshops, & Syntheses

- Need to be well-focused and related to the goals of DRK-12
- Should generate a product that is useful to those who did not attend the meeting
- Involve a diverse set of attendees

What are the *Common Guidelines*?

 NSF 13-126 - Joint effort between NSF and the Institute for Education Sciences at the U.S. Department of Education

http://www.nsf.gov/pubs/2013/nsf13126/ nsf13126.pdf?WT.mc_id=USNSF_124

• NSF 13-127 - Set of FAQs

http://www.nsf.gov/pubs/2013/nsf13127/ nsf13127.pdf

Goals of the *Common Guidelines* Project

- Improve the quality and pace of findings from education research and development proposals
- Develop an education infrastructure that supports more rapid and efficient knowledge development
- Aid NSF and ED in making informed choices about where to invest scarce research and development dollars
- Provide clarity for the field (and within the two agencies)

Types of Studies

- Foundational research and development studies
 - Generate fundamental knowledge that may contribute to teaching and/or learning
- Early stage/exploratory studies
 - Examine relationships among constructs to establish logical connections
- Design and development studies
 - Design and iteratively develop particular interventions (programs, policies, practices or technologies); can also pilot test fully developed intervention to see if it achieves its intended outcomes

Types of Studies - Impact

• Efficacy research and development

Testing of a strategy or intervention under "ideal" circumstances, including with a higher level of support or developer involvement than would be the case under normal circumstances

• Effectiveness research and development

 Effectiveness of a strategy or intervention under circumstances that would typically prevail

Scale-up studies

Effectiveness in a wide range of populations, contexts, and circumstances, without substantial developer involvement in implementation or evaluation.

Example: Design & Development -Purpose

Develop new or improved interventions or strategies to achieve well-specified learning goals or objectives

- Development of a solution
- Creation of measures to assess implementation of the solution
- Collection of data on the feasibility of implementation
- Conduct a pilot study to examine promise

Design & Development - Justification

- Policy and/or practical significance
 - Proposal should provide a compelling rationale
- Theoretical and Empirical Basis
 - Strong justification for development
 - Description of the initial concept for the planned investigation

Design & Development - Evidence

- Project Outcomes
 - Fully developed version of RMT
 - >Well-specified theory of action
 - Descriptions of major design iterations
 - Empirical evidence of adjustments made
 - > Measures with evidence of technical quality
 - Pilot data on promise

Design & Development - Evidence

- Research Plan methods for
 - Development of intervention
 - Collecting evidence on feasibility of implementation
 - > Obtaining pilot data on the promise of the intervention for achieving the expected outcomes

Common Guidelines for Educational Research and Development

 Potential PIs and grant writers are encouraged to use the information in the *Common Guidelines for Educational Research and Development* and the set of NSF FAQs regarding them to help in the preparation of proposals

Questions

Proposal Preparation

Proposal Preparation

- DR K-12 Solicitation: NSF 13-601 (Section V. Proposal Preparation and Submission Instructions)
- Proposals must be prepared in accordance with the NSF Grant Proposal Guide (GPG 13-1)

Project Summary

First Sentence

- Type of Proposal exploratory, full R&D, conference/workshops
- Main strand addressed

Second Sentence

- STEM Discipline(s)
- Grade or Age level(s) addressed

Intellectual Merit and Broader Impacts

 Must include separate statements on each of these two NSB criteria

Goals and Purposes

- Why is this project important?
- How will the project improve STEM education?
- How will it advance knowledge?
- What are the anticipated outcomes and/or products of this project?
- How might these products or findings be useful on a broader scale?

What Have You and Others Done?

- Describe the theoretical and research basis on which the proposal is based
- Discuss how the proposal is innovative and different from similar research and development projects
- If you have been funded by NSF, provide evidence about the **effectiveness** and **impact** of that work

How Are You Going To Do It?

- State clear research questions or hypotheses that the project will test
- Describe the plan for developing, adapting or implementing the proposed innovative resource, model, or tool
- Describe the research methods, including data analysis plans, sampling plan, and assessments
- Briefly describe the work plan and timeline

Who Will do The Work?

- Briefly describe the expertise of the persons included in the proposal and why they are needed:
 - Educational researchers and evaluators
 - > Teachers
 - STEM content experts
- Upload two page bios for all senior personnel

Evaluation or External Review

A proposal must describe appropriate project-specific external review and feedback processes.

- The review might include an external review panel or advisory board or a third-party evaluator
- The review must independent and rigorous
- The proposal must
 - Describe the expertise of the external reviewer(s)
 - Explain how that expertise relates to the goals and objectives of the proposal
 - Specify how the PI will report and use results of the project's external, critical review process
- There can be different groups providing formative and summative evaluation

Research vs Evaluation

- Research is integral to the project
- Research is conducted by appropriate team members
- Research aims to contribute to theory and to what is known about practice

How Will Others Learn About The Project?

- Plan and specific strategies for
 Dissemination of products and/or findings to researchers, policy makers, and practitioners
- Requirement to share design, findings, and products with the DR K-12 Resource Network, CADRE

Supplementary Documents

- Brief letters of commitment or cooperation*
- List of personnel on the proposal
- Data Management Plan
- Post Doc Mentoring Plan
- NO OTHER DOCUMENTS

*be careful not to include attachments to the letters

Budget

- Should be consistent with level of work you do not have to request the maximum!
- Two months salary: No more than two months of salary for senior personnel with academic positions on all NSF grants unless justified
- Indirect cost rates: Set by the institution and auditors and is non-negotiable
- No cost sharing
- Limited equipment; no undergraduate tuition

Reasons for Return Without Review

- Violation of formatting rules of the Grant Proposal Guide (e.g. font, page length etc)
- Failure to address specifically intellectual merit and broader impact in the project summary and description
- Unauthorized documents/data in the appendix
 or supplementary document section
- No post doc plan if post docs are included on budget
- No data management plan

Proposal Review Process

- Proposals are reviewed in panels composed of a range of external experts (e.g. educational researchers, content experts, teachers, developers)
- Each proposal will have about 4 reviews
- Each reviewer rates each proposal as Excellent, Very Good, Good, Fair or Poor

Proposal Review Process

- Proposals with an average score of Good or better, or that have a Very Good or Excellent rating are discussed in a panel.
 - The panel writes a summary of the reviews and ranks the proposal as highly competitive, competitive or noncompetitive.
- All elements of the review are advisory to NSF

Review Criteria

All proposals are reviewed under two criteria: Intellectual Merit and Broader Impact:

- What is the potential for the proposed activity to:
 - advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 - benefit society or advance desired societal outcomes (Broader Impacts)?
- To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
- Is the plan for carrying out the proposed activities well-reasoned, wellorganized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
- How well qualified is the individual, team, or institution to conduct the proposed activities?
- Are there adequate resources available to the PI (either at the home institution or through collaborations) to carry out the proposed activities?

January 2013 Proposals

- Proposals to panels: about 450
- Funded: about 60

Number of Awards (2014)

Anticipated number of awards: 35 to 50 Anticipated funds: \$50,000,000 for new awards

- Exploratory projects (15-20 awards)
 > up to \$450,000, max 3 years
- Full D&D projects (15-20 awards)
 - > up to \$3,000,000, max 4 years
- Conferences, Workshops, synthesis (5-10) awards)
 - > up to \$100,000, max 2 years

Questions

For Further Information

- Call 703-292-8620
- Email: <u>DRLDRK12@nsf.gov</u>
- Contact a DR K-12 Program Director

Program Directors

- The emails and phone numbers of DR K-12 PDs are listed in the announcement.
- Please write to one at a time.
- The following list will help you select which PD might be most related to your topic or area of interest.
- A PD might refer you to someone else after talking with you.

Content Expertise

- Mathematics Education: Karen King, Ferdinand Rivera
- Science Education Physical, Chemical: Gerhard Salinger, Maria Oliver-Hoya, Joe Reed
- Science Education Biology: Julia Clark, David Campbell, David Haury, Julio Lopez-Ferrao
- Engineering and Technology
 Education: Gerhard Salinger, Edith Gummer
- CyberLearning: Elizabeth VanderPutten, Janet Kolodner, John Cherniavsky
- Environmental/Climate/Social Science: Dave Campbell, Elizabeth VanderPutten

Strands

- Assessment Edith Gummer, Julio Lopez-Ferrao, Karen King, Elizabeth VanderPutten
- Learning All DRK-12 Program Directors
- **Teaching** All DRK-12 Program Directors
- **Implementation** Edith Gummer, Andres Henriquez, Elizabeth VanderPutten, Karen King

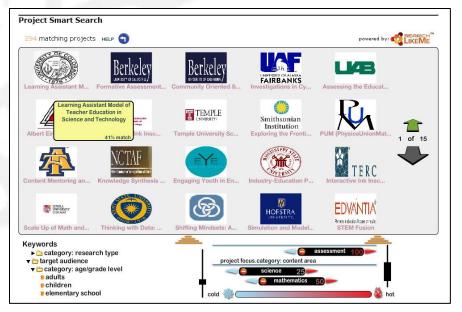
About CADRE

CADRE is the resource network for the DR K-12 Program. <u>http://cadrek12.org</u>; <u>cadre@edc.org</u>

http://facebook.com/cadrek12; http://twitter.com/cadrek12

In 2013-14, CADRE will:

- Provide opportunities for project staff to learn more about research, evaluation, development, and specific areas of STEM;
- Assist in disseminating the DR K-12 projects' results within the program and throughout the STEM education community through webinars, the CADRE website, project Spotlights, newsletters, workshops, Facebook, Twitter (@cadrek12), and other outreach efforts;
- Support early career researchers and developers through the CADRE Fellowship program; and
- Conduct research and syntheses of the work within the portfolio.



CADRE Resources

• Project Smart Search:

Find DR K-12 funded projects that match your interests at

http://cadrek12.org/project-smartsearch

• DR K-12 Portfolio Overview:

Read the descriptive overview of the DR K-12 portfolio to learn more about the DR K-12 projects funded over the past 5 years, at <u>http://cadrek12.org/sites/default/files/CADRE%20YR%205%20Portfolio%20</u> <u>Overview%20v7_stl.pdf</u>

CADRE Resources

• CADRE Toolkit:

CADRE has created a toolkit of resources that provides information on the research that is currently funded and includes a variety of measurement instruments; strategies for effective partnering, dissemination, evaluation, and knowledge use; and results of selected targeted studies.

Examples:

<u>Compendium of Research Instruments for STEM Education, PART I: Teacher</u> <u>Practices, PCK, and Content Knowledge</u>

<u>Compendium of STEM Student Instruments PART II: Measuring Students'</u> <u>Content Knowledge, Reasoning Skills, and Psychological Attributes</u>

Evaluation in DR K-12 Projects: Options

Thank you for your time and attention!