Projects

08/01/2017

Project Accelerate blends the supportive structures of a student's home school, a rigorous online course designed specifically with the needs of under-served populations in mind, and hands-on laboratory experiences, to make AP Physics accessible to under-served students. The project could potentially lead to the success of motivated but under-served students who attend schools where the opportunity to engage in a rigorous STEM curriculum is not available.

07/01/2017

This project aims to develop an innovative field-based science learning approach that will support the capacity of culturally diverse students in Grades K-3 to engage in complex ecological reasoning and related problem solving. To provide rich learning environments, outdoor learning gardens will be created in which students, teachers, garden educators, and families participate in activities that facilitate the investigation of tangible ecological challenges such as water capture and food security.

07/01/2017

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

05/15/2017

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

05/01/2017

This workshop provides minority serving institutions with an opportunity to engage in dialogue about effective ways to create, implement, and evaluate models of intervention that will advance knowledge about retaining underrepresented minorities in STEM fields. It will advance knowledge in life science and the biosciences for K-12 and undergraduate students attending local schools or eligible minority-serving institutions. The workshop will focus on assisting minority serving institutions with use of research designs, and review of best practices for intervention shown to be effective in helping underrepresented student cope with chronic stresses that interfere with their retention in STEM fields and careers.

04/01/2017

This conference will continue the workshop series Critical Issues in Mathematics Education (CIME). The CIME workshops engage professional mathematicians, education researchers, teachers, and policy makers in discussions of issues critical to the improvement of mathematics education from the elementary grades through undergraduate years. The workshop will deal with the problem of providing quality math education to all, and the barriers to doing so.

02/15/2017

This project explores how secondary mathematics teachers can plan and enact learning experiences that spur student curiosity, captivate students with complex mathematical content, and compel students to engage and persevere (referred to as "mathematically captivating learning experiences" or "MCLEs"). The study will examine how high school teachers can design lessons so that mathematical content itself is the source of student intrigue, pursuit, and passion. To do this, the content within mathematical lessons (both planned and enacted) is framed as mathematical stories and the felt tension between how information is revealed and withheld from students as the mathematical story unfolds is framed as its mathematical plot.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

01/15/2017

This project lays the foundation and framework for enabling digital, multimodal tactile graphics on touchscreens for individuals with visual impairments (VI). Given the low-cost, portability, and wide availability of touchscreens, this work promotes the use of vibrations and sounds on these readily available platforms for addressing the graphical access challenge for individuals with VI. An open-source vibration library has been created and fundamental perceptual building blocks (e.g.\ shapes, lines, critical points, line width and gaps, etc.) guiding how basic graphical components should be rendered on these platforms is being disseminated.

10/01/2016

For this project, researchers will iteratively develop simulations to include sonifications, non-speech sounds that represent visual information, aimed at enhancing accessibility for all learners, but particularly for those with visual impairments to produce sonified simulations, professional development resources, design guidelines and exemplars, and publications.

09/15/2016

The goal of this project is to develop a classroom observation tool and an online professional development model to help early-elementary teachers improve science instruction among young learners by cultivating scientific discourse.

09/15/2016

This project will scale up, implement, and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework, which seeks to improve performance and participation in mathematics of students in distressed school districts, particularly low-income students from underserved populations.

09/15/2016

This project will design and pilot professional development that focuses on developing the confidence, mathematical knowledge, and teaching strategies of paraeducators using classroom activities that they are expected to implement. The planned professional development will enable them to make a greater difference in the classroom, but it will also increase their access to continuing education and workplace opportunities.

09/01/2016

This project addresses the fundamental challenge of how to support teachers to improve their practice. The approach uses a "live mathematics classroom" as a common text for working on practice, where participants are not only watching and discussing but are engaged in developing and learning practice. The project will generate new knowledge regarding ways in which elementary teachers of mathematics can be supported to learn effective teaching practice.

02/01/2016

This project will design and develop specialized instructional materials and guidelines for teaching secondary algebra in linguistically diverse classrooms. These materials will incorporate current research on student learning in mathematics and research on the role of language in students' mathematical thinking and learning. The work will connect research on mathematics learning generally with research on the mathematics learning of ELLs, and will contribute practical resources and guidance for mathematics teachers who teach ELLs.

09/01/2015

This project will adapt and study a promising and replicable teacher professional development (PD) intervention, called Collaborative Math (CM), for use in early childhood programs. Prepared as generalists, preschool teachers typically acquire less math knowledge in pre-service training than their colleagues in upper grades, which reduces their effectiveness in teaching math. To address teacher PD needs, the project will simultaneously develop teacher content knowledge, confidence, and classroom practice by using a whole teacher approach.

09/01/2015

This project will integrate Native Hawaiian cross-cultural practices to explore ways to help teachers know about and know how to connect resources of students' familiar worlds to their science teaching. This project will transform the ways teachers orient their teaching at the upper elementary and middle grades through professional development courses offered at the University of Hawaii at Manoa.

09/01/2015

The project will use a quasi-experimental design to explore students' knowledge of core algebraic concepts in middle grades (grade 6), one year after their completion of 3-year, grades 3-5 early algebra intervention. The research questions are: (1) how well students who received a specific intervention retain their understanding of algebraic concepts in future years; and (2) whether and how the intervening year of regular classroom instruction in grade 6 influences the algebra understanding of both intervention and comparison students.

08/01/2015

This project addresses a critical need, developing professional development materials to address the teachers of ELLs. The project will create resources to help teachers build ELLs' mathematical proficiency through the design and development of professional development materials building on visual representations (VRs) for mathematical reasoning across a range of mathematical topics.

08/01/2015

The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective.