From Access to Sustainability: Investigating Ways to Foster Sustainable Use of Computational Modeling in K-12 Science Classrooms

This project investigates how to support sustained engagement in computational modeling in middle school classrooms in two ways: 1) Design and develop an accessible modeling toolkit and accompanying thematically linked curricular units; and, 2) Examine how this toolkit and curriculum enable students to become sophisticated modelers and integrate modeling with other scientific practices such as physical experimentation and argumentation.

Full Description

Modeling is a core scientific activity in which a difficult-to-observe phenomenon is represented, e.g., visually or in a computer program. Research has shown that sustained experience with modeling contributes to sophisticated understanding, learning, and engagement of scientific practices. Computational modeling is a promising way to integrate computation and science learning. Yet computational modeling is not widely adopted in science classrooms over sustained periods of time because of difficulties such as the time required for students to become adept modelers, the need to better integrate computational modeling with other scientific practices, and the need for teachers to experience agency in using these modeling tools. This Design and Development project investigates how to support sustained engagement in computational modeling in middle school classrooms in two ways: 1) Design and develop an accessible modeling toolkit and accompanying thematically linked curricular units; and, 2) Examine how this toolkit and curriculum enable students to become sophisticated modelers and integrate modeling with other scientific practices such as physical experimentation and argumentation. The project will contribute to the conversation around how to support students and teachers to incorporate computational modeling together with valued scientific practices into their classrooms for sustained periods. For three years, the project will work with six sixth and seventh grade teachers and approximately 400 students.

Through iterative cycles of design-based research, the project will design a computational modeling tool and six curricular units for sixth and seventh-grade students. The team will work closely with two teacher co-designers to design and develop each of the six curricular units. The goal is to investigate: 1) How students become sophisticated modelers as they shift from using phenomenon-level primitives to unpacking and modifying these primitives for extended investigations; 2) How classroom norms around computational modeling develop over time. Specifically, how do student models become objects for classroom reflection and how students integrate modeling into other practices such as explanation and argumentation; 3) How data from physical experiments support students in constructing and refining models; and, 4) How sustained engagement supports students' conceptual learning and learning to model using computing tools. The team will collect and analyze video and written data, as well as log files and pre/posttests, to examine how communities of students and teachers adopt computational modeling as an integral practice in science learning. For video and text analysis, the team will use qualitative coding to detect patterns before, during, and after the activities. For the examination of logfiles from the software, the project will use learning analytics techniques such as the classification and clustering of students' sequences of actions. Finally, the team will also conduct pre/post-tests on both content and meta-modeling skills, analyzing the results with standard statistical tests.


Project Videos

2022 STEM for All Video Showcase

Title: Integrating Data & Modeling for Science Learning in School

Presenter(s):Aditi Wagh, Paulo Blikstein, Engin Bumbacher, Adelmo Eloy, Tamar Fuhrmann, Leah Rosenbaum, Michelle Wilkerson, & Jacob Wolf


PROJECT KEYWORDS

Project Materials