Women/Girls

Continuous Learning and Automated Scoring in Science (CLASS)

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items into the "Web-based Inquiry Science Environment" (WISE) program.

Award Number: 
1119670
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

This five-year project investigates how to provide continuous assessment and feedback to guide students' understanding during science inquiry-learning experiences, as well as detailed guidance to teachers and administrators through a technology-enhanced system. The assessment system integrates validated automated scorings for students' written responses to open-ended assessment items (i.e., short essays, science narratives, concept mapping, graphing problems, and virtual experiments) into the "Web-based Inquiry Science Environment" (WISE) program. WISE is an online science-inquiry curricula that supports deep understanding through visualization of processes not directly observable, virtual experiments, graphing results, collaboration, and response to prompts for explanations. In partnership with Educational Testing Services (ETS), project goals are: (1) to develop five automated inquiry assessment activities that capture students' abilities to integrate their ideas and form coherent scientific arguments; (2) to customize WISE by incorporating automated scores; (3) to investigate how students' systematic feedback based on these scores improve their learning outcomes; and (4) to design professional development resources to help teachers use scores to improve classroom instruction, and administrators to make better informed decisions about teacher professional development and inquiry instruction. The project targets general science (life, physical, and earth) in three northern California school districts, five middle schools serving over 4,000 6th-8th grade students with diverse cultural and linguistic backgrounds, and 29 science teachers. It contributes to increase opportunities for students to improve their science achievement, and for teachers and administrators to make efficient, evidence-based decisions about high-quality teaching and learning.

A key research question guides this effort: How automated scoring of inquiry assessments can increase success for diverse students, improve teachers' instructional practices, and inform administrators' decisions about professional development, inquiry instruction, and assessment? To develop science inquiry assessment activities, scoring written responses include semantic, syntax, and structure of meaning analyses, as well as calibration of human-scored items with a computer-scoring system through the c-rater--an ETS-developed cyber learning technology. Validity studies are conducted to compare automated scores with human-scored items, teacher, district, and state scores, including sensitivity to the diverse student population. To customize the WISE curriculum, the project modifies 12 existing units and develops nine new modules. To design adaptive feedback to students, comparative studies explore options for adaptive guidance and test alternatives based on automated scores employing linear models to compare student performance across randomly assigned guidance conditions; controlling for covariates, such as prior science scores, gender, and language; and grouping comparison studies. To design teacher professional development, synthesis reports on auto-scored data are created to enable them to use evidence to guide curricular decisions, and comments' analysis to improve feedback quality. Workshops, classroom observations, and interviews are conducted to measure longitudinal teachers' change over time. To empower administrators' decision making, special data reports, using-evidence activities, individual interviews, and observation of administrators' meetings are conducted. An advisory board charged with project evaluation addresses both formative and summative aspects.

A research-informed model to improve science teaching and learning at the middle school level through cyber-enabled assessment is the main outcome of this effort. A total of 21 new, one- to three-week duration standards-based science units, each with four or more automatically scored items, serve as prototypes to improve students' performance, teachers' instructional approaches, and administrators' school policies and practices.

Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards

This is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices.

Award Number: 
1119163
Funding Period: 
Mon, 08/01/2011 to Tue, 07/31/2012
Full Description: 

The Implementing Mathematical Practices Standards (IMPS) is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices. Researchers at the Education Development Center are developing videos and print materials that exemplify the mathematical practices and are working with teachers in grades 5-10 to help them use the materials effectively. The research questions of the project are focused on what features of the materials are most helpful to teachers and what professional development characteristics facilitate implementation of the mathematics practices in classroom instruction. The external evaluation of the project is being conducted by evaluators at TERC who are looking the process of developing materials and how the materials are used.

The materials will include professionally-produced videos exemplifying a particular mathematical practice being implemented in a classroom as well as printed dialogues that are designed to help teachers understand the practice and why it is critical for students to acquire that mathematical practice. The exemplars of mathematical practices are being developed based on pilot work and systematic advice from mathematicians, mathematics educators and mathematics teachers in grades 5-10. The design process is iterative and materials are refined based on feedback that is received. Facilitators are being prepared to conduct professional development and materials are being tested by more than 150 teachers in a variety of school districts.

Professional groups such as NCTM and NCSM have called for materials that exemplify the CCSS mathematical practices. They have argued that teachers need to understand how these standards can be achieved in classrooms. IMPS systematic effort to design materials that exemplify the standards and to test not only the materials but also the professional development associated with the materials is responding to the national need. The videos and dialogues will be available through broad dissemination.

CAREER: Supporting Middle School Students' Construction of Evidence-Based Arguments

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0953046
Funding Period: 
Sun, 08/15/2010 to Fri, 07/31/2015
Project Evaluator: 
David Williams
Full Description: 

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. The question chosen for study by a new researcher at Utah State University is: How can argumentation ability be enhanced among middle school students? This study involves 325 middle school students in 12 class sections from 3 school districts in Utah and Idaho. First, students in middle school science classrooms will be introduced to problem-based learning (PBL) units that allow them to investigate ill-structured science problems. These activities provide students with something about which to argue: something that they have explored personally and with which they have grappled. Next, they will construct arguments using a powerful computer technology, the Connection Log, developed by the PI. The Connection Log provides a scaffold for building arguments, allowing each student to write about his/her reasoning and compare it to arguments built by peers. The study investigates how the Connection Log improves the quality of students' arguments. It also explores whether students are able to transfer what they have learned to new situations that call for argumentation.

This study is set in 6th and 7th grade science classrooms with students of diverse SES, ethnicity, and achievement levels. The Connection Log software supports middle school students with written prompts on a computer screen that take students through the construction of an argument. The system allows students to share their arguments with other members of their PBL group. The first generation version of the Connection Log asks students to:

1. define the problem, or state the problem in their own words

2. determine needed information, or decide on evidence they need to find to solve the problem

3. find and organize needed information

4. develop a claim, or make an assertion stating a possible problem solution

5. link evidence to claim, linking specific, relevant data to assertions

The model will be optimized through a process of design-based research. The study uses a mixed methods research design employing argument evaluation tests, video, interviews, database information, debate ratings, and a mental models measure, to evaluate student progress.

This study is important because research has shown that students do not automatically come to school prepared to create evidence-based arguments. Middle school students face three major challenges in argumentation: adequately representing the central problem of the unit; determining and obtaining the most relevant evidence; and synthesizing gathered information to construct a sound argument. Argumentation ability is crucial to STEM performance and to access to STEM careers. Without the ability to formulate arguments based upon evidence, middle school students are likely to be left out of the STEM pipeline, avoid STEM careers, and have less ability to critically evaluate and understand scientific findings as citizens. By testing and refining the Connection Log, the project has the potential for scaling up for use in science classrooms (and beyond) throughout the United States.

Math Pathways and Pitfalls: Capturing What Works for Anytime Anyplace Professional Development

Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.

Lead Organization(s): 
Award Number: 
0918834
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Full Description: 

Researchers and developers at WestEd are developing, field-testing, and evaluating ten online professional development modules anchored in research-based teaching principles and achievement-boosting mathematics materials. The modules provide interactive learning opportunities featuring real classroom video demonstrations, simulations, and scaffolded implementation. The professional development module development builds on the Math Pathways and Pitfalls instructional modules for elementary and middle school students developed with NSF support. The professional development provided through the use of these modules is web-based (rather than face-to-face), is provided in chunks during the school year and immediately applied in the classroom (rather than summer professional development and school year application), and explicitly models ways to apply key teaching principles to regular mathematics lessons (rather than expecting teachers to extract and apply principles spontaneously).

The project studies the impact of the modules on teaching practice with an experimental design that involves 20 treatment teachers and 20 control teachers. Data are gathered from teacher questionnaires, classroom observations, and post-observation interviews.

CLUSTER: Investigating a New Model Partnership for Teacher Preparation (Collaborative Research: Steinberg)

This project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. The study is designed to examine and document the effect of this integrated program on the production of urban science teachers. This study will also research the impact of internships in science centers on improving classroom science teaching in urban high schools.

Award Number: 
0554269
Funding Period: 
Sat, 04/01/2006 to Thu, 03/31/2011
Full Description: 

            CLUSTER (Collaboration for Leadership in Urban Science Teaching, Evaluation and Research) is an NSF-funded TPC project. Its partners are The City College of New York (CCNY), New York Hall of Science (NYHS), and City University of New York’s Center for Advanced Study in Education (CASE). It aims to develop and research a model designed to increase and improve the pool of secondary science teachers who reflect the ethnic distribution of city students and who are prepared to implement inquiry-based science instruction.

            CLUSTER Fellows are undergraduate science majors in New York City. They are recruited, trained, and certified to teach science in New York City middle and high schools. They participate both as students in the CCNY Teacher Education Program and as Explainers in the NYHS Science Career Ladder. Their experiences in class and at the NYHS are integrated and guided by a conceptual framework, which emphasizes science as an active process of discovery where ideas are developed and constructed through meaningful experience.

            CLUSTER aims to produce generalizable knowledge of interest to the field regarding the growth and development of perspective teachers in an experiential training program and to assess the impact and value of the CLUSTER model.

Pages

Subscribe to Women/Girls