Preservice Teachers

From Undergraduate STEM Major to Enacting the NGSS

The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1317059
Funding Period: 
Thu, 08/01/2013 to Fri, 07/31/2015
Full Description: 

The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops. Workshop sessions integrate crosscutting concepts, scientific practices, and engineering design as articulated in the Framework for K-12 Science Education (NRC, 2012). Infusing the Frameworks into the workshop helps STEM faculty better understand their role in preparing future K-12 teachers to implement the new standards, by transforming their own undergraduate courses in ways that actively engage students in modeling, argumentation, making claims from evidence, and engineering design. The National Science Foundation (NSF), the Howard Hughes Medical Institute (HHMI), the American Physical Society's PhysTEC project, and University of Colorado-Boulder, provide resources for national workshops in 2013 and 2014 allowing 80 additional math, science, and engineering faculty from a range of institutions to directly experience the LA model and to learn ways to implement, adapt, grow, and sustain a program on their own campuses. Evaluation of the project focuses on long-term effects of workshop participation and contributes to efforts to strengthen networks within the international Learning Assistant Alliance. The launching of 10 - 12 new LA programs is anticipated, and many existing programs will expand into new STEM departments as a result of the national workshops.

Workshop participants are awarded travel grants and in return, provide data each year for two years so that long-term impacts of the workshop can be evaluated. Online surveys provide data about each institution's progress in setting up a program, departments in which the program runs, number of faculty involved, number of courses transformed, numbers of teachers recruited, and estimated number of students impacted. These data provide correlations between workshop attendance and new program development, and allow the computation of national cost per impacted student as well as the average cost per STEM teacher recruited. Anonymous data are made available to International Learning Assistant Alliance partners to promote collaborative research and materials development across sites.

The 2013 and 2014 national workshops train eight faculty members who have experience running LA programs to offer regional workshops for local university and community college faculty members. This provides even greater potential for teacher recruitment and preparation through the LA model and for data collection from diverse institutions. This two-year project has potential to support 320 math, science, and engineering faculty as they transform their undergraduate courses in ways consistent with the Frameworks, in turn affording tens of thousands of undergraduate students (and hundreds of future teachers) more and better opportunities to engage with each other and with STEM content through the use of scientific and engineering practices. STEM faculty who participate in what appears to be an easy to adopt process of course transformation through the LA model, become more aware of issues in educational diversity, equity, and access leading to fundamental transformations in the way education is done in a department and at an institution, ultimately leading to sustained policy changes and shared vision of equitable, quality education.

Formal and informal mentoring in the first year of teaching.

Presenter(s): 
Hochberg, E. D., Hawkinson, L. E., Cannata, M., Desimone, L. D., & Porter, A. C.
Year: 
2009
Month: 
April
Presentation Type: 

Mathematical Knowledge for Equitable Teaching

Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases.

Partner Organization(s): 
Award Number: 
1725551
Funding Period: 
Mon, 10/01/2012 to Fri, 08/31/2018
Full Description: 

Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases. The program includes mini courses of one hour that are spread throughout the program, ending just prior to student teaching.

Building on prior NSF-funded research, the researchers are investigating ways to help preservice teachers of mathematics at the elementary level to learn the mathematics needed for teaching and how to provide equitable instruction that encourages all students to share their mathematical thinking. Based on data collected in this exploratory study, researchers will revise the MQE and improve the validity and reliability of the instrument. They are also developing ways to use the MQE for both assessment and for instruction.

The materials, curriculum, and model produced by this project are helping elementary teachers learn important mathematics and learn to teach that mathematics in an equitable way. Although the model includes mini courses that are taught throughout the program, the materials can easily be adapted to a longer, traditional course for preservice teachers. The revisions of the MQE are producing an observational protocol that has the potential to vastly improve the way researchers study teachers' instructional practices.

This project was previously funded under award #1222843.

Videocases for Science Teaching Analysis Plus (ViSTA Plus): Efficacy of a Videocase-Based, Analysis-of-Practice Teacher Preparation Program

The new ViSTA Plus study explores implementation of a program for pre-service/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?" The project is producing science-specific, analysis-of-practice materials to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

Lead Organization(s): 
Award Number: 
1220635
Funding Period: 
Wed, 08/01/2012 to Sat, 06/30/2018
Full Description: 

Prior studies have demonstrated the positive impact of content-specific videocases of other teachers' practice on science content knowledge and ability to analyze teaching when the videocases are incorporated in the methods courses for preservice teachers. Similar outcomes occurred for experienced, inservice teachers in a year-long professional development that included analyzing video of their own and others' teaching, and these teachers changed their practice in ways that influenced students' science learning. The new ViSTA Plus study explores implementation of a 2-year program for preservice/beginning teachers that is fully centered on learning from an analysis-of-practice perspective, addressing the central research question of "What is the value of a videocase-based, analysis-of-practice approach to elementary science teacher preparation?"

ViSTA Plus presents a distinctive version of practice-based teacher education, one that immerses teachers into practice via scaffolded, collaborative analyses of videocases - starting with analysis of other teachers' videocases and moving to collaborative analysis of teachers' own videocases. The ViSTA Plus conceptual framework supports teachers in using Student Thinking and Science Content Storyline Lenses to analyze science teaching and in using a set of teaching strategies that support use of each of these lenses in their planning and teaching. Through this analysis work, teachers deepen their science content knowledge, develop the ability to analyze teaching and learning, and improve their teaching and their students' learning. The current study incorporates a quasi-experimental design to compare the impact of the ViSTA Plus program to that of traditional teacher preparation programs when implemented at universities that serve diverse populations, especially Native American, Hispanic, and low-SES students. Teacher measures are assessing science content knowledge (pre, mid, and posttests), ability to analyze science teaching and learning (pre, mid, and post video analysis tasks), and teaching practice (videorecorded lessons during student teaching and first year of teaching). Elementary students' science achievement is being assessed using pre-post unit tests during student teaching and the first year of teaching.

The study design addresses a gap in the research on preservice teacher preparation by following the pathway of program influence from teacher learning to teaching practice to student learning, and accomplishes this in the context of ViSTA Plus, an alternative, practice-based approach to teacher preparation that embeds all phases of teacher learning in practice from the beginning. Partner universities in this effort are eager to reimagine the traditional teacher preparation sequence, offering new models for the field. The project is producing science-specific, analysis-of-practice materials (videocases, methods course guides, study group guides) to support the professional development of teacher educators and professional development leaders using the ViSTA Plus program at universities and in district-based induction programs.

CAREER: Learning to Support Productive Collective Argumentation in Secondary Mathematics Classes

Research has shown that engaging students, including students from underrepresented groups, in appropriately structured reasoning activities, including argumentation, may lead to enhanced learning. This project will provide information about how teachers learn to support collective argumentation and will allow for the development of professional development materials for prospective and practicing teachers that will enhance their support for productive collective argumentation.

Award Number: 
1149436
Funding Period: 
Sun, 07/01/2012 to Sun, 06/30/2019
Full Description: 

Doing mathematics involves more than simply solving problems; justifying mathematical claims is an important part of doing mathematics. In fact, proving and justifying are central goals of learning mathematics. Recently, the Common Core State Standards for Mathematics has again raised the issue of making and critiquing arguments as a central practice for students studying mathematics. If students are to learn to make and critique arguments within their mathematics classes, teachers must be prepared to support their students in learning to argue appropriately in mathematics. This learning often occurs during class discussions in which arguments are made public for all students in the class. The act of creating arguments together in a classroom is called collective argumentation. Teachers need to be able to support students in productively engaging in collective argumentation, but research has not yet shown how they learn to do so. This project will document how mathematics teachers learn to support their students in engaging in productive collective argumentation. The research team will follow a cohort of participants (college students majoring in mathematics education) through their mathematics education coursework, observing their engagement in collective argumentation and opportunities to learn about supporting collective argumentation. The team will continue to follow the participants into their first two years of teaching, focusing on how their support for collective argumentation evolves over time. During their first two years of teaching, the research team and participants will work together to analyze the participants' support for collective argumentation in order to help the participants develop more effective ways to support collective argumentation.

Research has shown that engaging students, including students from underrepresented groups, in appropriately structured reasoning activities, including argumentation, may lead to enhanced learning. This project will provide information about how teachers learn to support collective argumentation and will allow for the development of professional development materials for prospective and practicing teachers that will enhance their support for productive collective argumentation.

Pages

Subscribe to Preservice Teachers