Preservice Teachers

Developing Rich Media-Based Materials for Practice-Based Teacher Education

This research and development project is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom.

Award Number: 
1316241
Funding Period: 
Thu, 08/15/2013 to Tue, 07/31/2018
Full Description: 

The 4-year research and development project, Developing Rich Media-based Materials for Practice-based Teacher Education, is premised on the notion that recent technological developments have made it feasible to represent classroom work in new ways. In addition to watching recorded videos of classroom interactions or reading written cases, teacher educators and teachers can now watch animations and image sequences, realized with cartoon characters, and made to depict activities that happened, or could have happened, in a mathematics classroom. Furthermore, teacher educators and teachers can react to such animations or image sequences by making their own depictions of alternative moves by students or teachers in classroom interaction. And all of that can take place in an on-line, cloud-based environment that also supports discussion fora, questionnaires, and the kinds of capabilities associated with learning management systems. Such technologies offer important affordances to teacher educators seeking to provide candidates with course-based experiences that emphasize the development of practice-based skills. The focus of the project is on mathematics teacher education. This joint project of the University of Maryland Center for Mathematics Education and the University of Michigan will produce 6 to 8 field-tested modules for use in different courses that are a part of mathematics teacher preparation programs. The following two-pronged research question will be resolved: What are the affordances and constraints of the modules and the environment as supports for: (1) practice based teacher education and (2) a shift toward blended teacher education?

The project involves the following activities: (1) a teacher education materials development component; (2) a related evaluation component; and (3) two research components. The development phase seeks to develop both the LessonSketch.org platform and six to eight mathematics teacher education modules for use in preservice teacher education programs from around the country. The modules will be written with practice-based teacher education goals in mind and will use the capacities of the LessonSketch.org platform as a vehicle for using rich-media artifacts of teaching with preservice teacher candidates. LessonSketch Teacher Education Research and Development Fellows will be chosen through a competitive application process. They will develop their respective modules along with teams of colleagues that will be recruited to form their inquiry group and pilot the module activities. The evaluation activity will focus on the materials development aspect of the project. Data will be collected by the LessonSketch platform, which includes interviews with Fellows and their teams, perspectives of module writers, descriptive statistics of module use, and feedback from both teacher educator and preservice teacher end-users about the quality of their experiences. The first research activity of the project is design research on the kinds of technological infrastructure that are useful for practice-based teacher education. The PIs will identify tools that teacher educators need and want beyond the current capabilities for web-based support for use of rich media and will produce prototype tools inside the LessonSketch environment to meet these needs. The second research activity of the project will supplement the evaluation activity by examining the implementation of two of the modules in detail. This aspect of the research will examine the goals of the intended curriculum, the proposed modes of media use, the fidelity of the implemented curriculum, and learnings produced by preservice teachers. This research activity will help the field understand the degree to which practice-based teacher education that is mediated by an online access to rich media would be a kind of practice that could be easily incorporated into existing teacher education structures.

The project will produce 6 to 8 LessonSketch modules for use in teacher education classes. Each module will be implemented in at least eight teacher education classes across the country, which means that between 720 and 960 preservice teacher candidates will study the materials. The project aims to shift the field toward practice-based teacher education by supporting university programs to implement classroom-driven activities that will produce mathematics teachers with strong capabilities to teach mathematics effectively and meaningfully.

Secondary Science Teaching with English Language and Literacy Acquisition (SSTELLA)

This is a four-year project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language.

Award Number: 
1316834
Funding Period: 
Thu, 08/01/2013 to Wed, 07/31/2019
Full Description: 

This is a four-year Discovery Research K-12 project to develop, implement, and study an experimental model of secondary science pre-service teacher education designed to prepare novice school teachers to provide effective science instruction to English language learners (ELLs). The project incorporates the principles underlying the Next Generation Science Standards with a focus on promoting students' scientific sense-making, comprehension and communication of scientific discourse, and productive use of language. It articulates theory and practice related to the teaching of science content and the development of English language and literacy, and provides teachers with models of integrated practice in video cases and curriculum units. To test the efficacy of the study, a longitudinal, mixed-methods, quasi-experimental study is conducted at four institutions: the University of California-Santa Cruz, Arizona State University, the University of Arizona, and the University of Texas at San Antonio.

The three research questions are: (1) What is the impact of the project's pre-service teacher education program on novice secondary science teachers' knowledge, beliefs, and practice from the pre-service program into the second year of teaching?; (2) What is the relationship between science method instructors' fidelity of implementation of the project's practices and novice teachers' outcomes (knowledge, beliefs, and practice)?; and (3) What is the relationship between novice teachers' implementation of project-promoted practices and their students' learning? To answer these questions, the project collects and analyzes quantitative and qualitative data on novice teachers (85 treatment group and 85 control group) over three years utilizing surveys, interviews, observations, and student assessment instruments. Teachers' beliefs and knowledge about teaching science to ELLs are measured using the project-developed Science Teaching Survey, which provides quantitative scores based on a Likert-type scale, and the science teacher interview protocol to provide qualitative data, including the contextual factors affecting implementation of project-promoted practices. Classroom observations are captured through qualitative field notes and the Classroom Observation Rubric--a systematic project-developed observation instrument that measures implementation of the practices. Student learning outcomes are measured using (a) the Woodcock-Muñoz Language Survey (students' proficiency at applying listening, reading, writing, and comprehension abilities); (b) the Literacy in Science Assessment (students' productive use of language in authentic science literacy tasks); (c) the Scientific Sense-Making Assessment (how students make sense of core science ideas through scientific and engineering practices); and (d) appropriate state standardized assessments. In addition, the Opportunity to Learn Survey gauges students' perceptions of implementation of literacy integration, motivation in class, and identity as readers.

Project outcomes are: (a) a research-based and field-tested model for pre-service secondary science teacher education, including resources for science methods courses instructors and pre-service teachers; and (b) valid and reliable instrumentation usable in similar research and development environments.


Project Videos

2019 STEM for All Video Showcase

Title: Preparing Science Teachers to Support English Learners

Presenter(s): Edward Lyon


From Undergraduate STEM Major to Enacting the NGSS

The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1317059
Funding Period: 
Thu, 08/01/2013 to Fri, 07/31/2015
Full Description: 

The Colorado Learning Assistant (LA) model, recognized nationally as a hallmark teacher recruitment and preparation program, has run a national workshop annually for four years to disseminate and scale the program. This project expands the existing annual workshop to address changing needs of participants and to prepare eight additional faculty members to lead new regional workshops. Workshop sessions integrate crosscutting concepts, scientific practices, and engineering design as articulated in the Framework for K-12 Science Education (NRC, 2012). Infusing the Frameworks into the workshop helps STEM faculty better understand their role in preparing future K-12 teachers to implement the new standards, by transforming their own undergraduate courses in ways that actively engage students in modeling, argumentation, making claims from evidence, and engineering design. The National Science Foundation (NSF), the Howard Hughes Medical Institute (HHMI), the American Physical Society's PhysTEC project, and University of Colorado-Boulder, provide resources for national workshops in 2013 and 2014 allowing 80 additional math, science, and engineering faculty from a range of institutions to directly experience the LA model and to learn ways to implement, adapt, grow, and sustain a program on their own campuses. Evaluation of the project focuses on long-term effects of workshop participation and contributes to efforts to strengthen networks within the international Learning Assistant Alliance. The launching of 10 - 12 new LA programs is anticipated, and many existing programs will expand into new STEM departments as a result of the national workshops.

Workshop participants are awarded travel grants and in return, provide data each year for two years so that long-term impacts of the workshop can be evaluated. Online surveys provide data about each institution's progress in setting up a program, departments in which the program runs, number of faculty involved, number of courses transformed, numbers of teachers recruited, and estimated number of students impacted. These data provide correlations between workshop attendance and new program development, and allow the computation of national cost per impacted student as well as the average cost per STEM teacher recruited. Anonymous data are made available to International Learning Assistant Alliance partners to promote collaborative research and materials development across sites.

The 2013 and 2014 national workshops train eight faculty members who have experience running LA programs to offer regional workshops for local university and community college faculty members. This provides even greater potential for teacher recruitment and preparation through the LA model and for data collection from diverse institutions. This two-year project has potential to support 320 math, science, and engineering faculty as they transform their undergraduate courses in ways consistent with the Frameworks, in turn affording tens of thousands of undergraduate students (and hundreds of future teachers) more and better opportunities to engage with each other and with STEM content through the use of scientific and engineering practices. STEM faculty who participate in what appears to be an easy to adopt process of course transformation through the LA model, become more aware of issues in educational diversity, equity, and access leading to fundamental transformations in the way education is done in a department and at an institution, ultimately leading to sustained policy changes and shared vision of equitable, quality education.

Formal and informal mentoring in the first year of teaching.

Presenter(s): 
Hochberg, E. D., Hawkinson, L. E., Cannata, M., Desimone, L. D., & Porter, A. C.
Year: 
2009
Month: 
April
Presentation Type: 

Mathematical Knowledge for Equitable Teaching

Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases.

Partner Organization(s): 
Award Number: 
1725551
Funding Period: 
Mon, 10/01/2012 to Fri, 08/31/2018
Full Description: 

Researchers, at the University of Houston, are designing, implementing and studying a curriculum that prepares preservice, elementary teachers for equitable teaching of mathematics. The program increases the mathematical knowledge of preservice teachers and helps them recognize and implement equitable instruction. The preservice teachers are learning to recognize equitable practices by using the Mathematical Quality and Equity Observation Protocol (MQE) to assess teaching as viewed in video cases. The program includes mini courses of one hour that are spread throughout the program, ending just prior to student teaching.

Building on prior NSF-funded research, the researchers are investigating ways to help preservice teachers of mathematics at the elementary level to learn the mathematics needed for teaching and how to provide equitable instruction that encourages all students to share their mathematical thinking. Based on data collected in this exploratory study, researchers will revise the MQE and improve the validity and reliability of the instrument. They are also developing ways to use the MQE for both assessment and for instruction.

The materials, curriculum, and model produced by this project are helping elementary teachers learn important mathematics and learn to teach that mathematics in an equitable way. Although the model includes mini courses that are taught throughout the program, the materials can easily be adapted to a longer, traditional course for preservice teachers. The revisions of the MQE are producing an observational protocol that has the potential to vastly improve the way researchers study teachers' instructional practices.

This project was previously funded under award #1222843.

Pages

Subscribe to Preservice Teachers