Preservice Teachers

SmartCAD: Guiding Engineering Design with Science Simulations (Collaborative Research: Magana-de-Leon)

This project investigates how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment.

Lead Organization(s): 
Award Number: 
1503436
Funding Period: 
Mon, 06/15/2015 to Fri, 05/31/2019
Full Description: 

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. 

In this project, SmartCAD: Guiding Engineering Design with Science Simulations, the Concord Consortium (lead), Purdue University, and the University of Virginia investigate how real time formative feedback can be automatically composed from the results of computational analysis of student design artifacts and processes with the envisioned SmartCAD software. Through automatic feedback based on visual analytic science simulations, SmartCAD is able to guide every student at a fine-grained level, allowing teachers to focus on high-level instruction. Considering the ubiquity of CAD software in the workplace and their diffusion into precollege classrooms, this research provides timely results that could motivate the development of an entire genre of CAD-based learning environments and materials to accelerate and scale up K-12 engineering education. The project conducts design-based research on SmartCAD, which supports secondary science and engineering with three embedded computational engines capable of simulating the mechanical, thermal, and solar performance of the built environment. These engines allow SmartCAD to analyze student design artifacts on a scientific basis and provide automatic formative feedback in forms such as numbers, graphs, and visualizations to guide student design processes on an ongoing basis. 

The research hypothesis is that appropriate applications of SmartCAD in the classroom results in three learning outcomes: 1) Science knowledge gains as indicated by a deeper understanding of the involved science concepts and their integration at the completion of a design project; 2) Design competency gains as indicated by the increase of iterations, informed design decisions, and systems thinking over time; and 3) Design performance improvements as indicated by a greater chance to succeed in designing a product that meets all the specifications within a given period of time. While measuring these learning outcomes, this project also probes two research questions: 1) What types of feedback from simulations to students are effective in helping them attain the outcomes? and 2) Under what conditions do these types of feedback help students attain the outcomes? To test the research hypothesis and answer the research questions, this project develops three curriculum modules based on the Learning by Design (LBD) Framework to support three selected design challenges: Solar Farms, Green Homes, and Quake-Proof Bridges. This integration of SmartCAD and LBD situate the research in the LBD context and shed light on how SmartCAD can be used to enhance established pedagogical models such as LBD. Research instruments include knowledge integration assessments, data mining, embedded assessments, classroom observations, participant interviews, and student questionnaires. This research is carried out in Indiana, Massachusetts, and Virginia simultaneously, involving more than 2,000 secondary students at a number of socioeconomically diverse schools. Professional development workshops are provided to familiarize teachers with SmartCAD materials and implementation strategies prior to the field tests. An external Critical Review Committee consisting of five engineering education researchers and practitioners oversee and evaluate this project formatively and summative. Project materials and results are disseminated through publications, presentations, partnerships, and the Internet.

Fostering STEM Trajectories: Bridging ECE Research, Practice, and Policy

This project will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM.  A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1417878
Funding Period: 
Mon, 06/15/2015 to Tue, 05/31/2016
Full Description: 

Early childhood education is at the forefront of the minds of parents, teachers, policymakers as well as the general public. A strong early childhood foundation is critical for lifelong learning. The National Science Foundation has made a number of early childhood grants in science, technology, engineering and mathematics (STEM) over the years and the knowledge generated from this work has benefitted researchers. Early childhood teachers and administrators, however, have little awareness of this knowledge since there is little research that is translated and disseminated into practice, according to the National Research Council. In addition, policies for both STEM and early childhood education has shifted in the last decade. 

The Joan Ganz Cooney Center and the New America Foundation are working together to highlight early childhood STEM education initiatives. Specifically, the PIs will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. The papers will be used as anchor topics to organize a forum with a broad range of stakeholders including policymakers as well as early childhood researchers and practitioners. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report. The synthesis report will be widely disseminated by the Joan Ganz Cooney Center and the New America Foundation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed project.

CAREER: Proof in Secondary Classrooms: Decomposing a Central Mathematical Practice

This project will develop an intervention to support the teaching and learning of proof in the context of geometry.

Lead Organization(s): 
Award Number: 
1453493
Funding Period: 
Wed, 07/15/2015 to Tue, 06/30/2020
Full Description: 

This project, funded as part of the CAREER program, would add to the knowledge base on the teaching and learning of proof in the context of the most prevalent course/topic in which proof is taught in the K-12 curriculum, geometry. Given the centrality of the role of proof, and the persistent difficulties in teaching proof in the K-12 and undergraduate curriculum, the topic is of vital importance. The work is novel, focusing on an area of proof that is understudied, the introduction of students to the topic of proof. While building on prior work in proof, the project will tackle an important area of beginning to teach proof, which may lead to broader innovations at both the K-12 and undergraduate level. The project will produce a resource, a set of lessons, which can be used widely and are likely to be broadly disseminated based on the PI's previous NSF-supported work, which has been broadly disseminated to practitioner audiences. 

The goal of the project is to develop an intervention to support the teaching and learning of proof in the context of geometry. This study takes as its premise that if we introduce proof, by first teaching students particular sub-goals of proof, such as how to draw a conclusion from a given statement and a definition, then students will be more successful with constructing proofs on their own. The 5-year design and development study builds on the researcher's prior work from a Knowles Science Teaching Fellowship (KSTF) grant to study how teachers introduce proof to students. This study will build on the prior work to refine a framework for introducing proof developed in the KSTF study. Using this framework the researcher will work with five high school geometry teachers to develop lessons via Lesson Study methods to introduce sub-goals of proof. The PI will study the impact of the use of these lessons on students' ability to perform proofs, and compare to students of ten teachers who will not have participated in the intervention.

 

CAREER: L-MAP: Pre-service Middle School Teachers' Knowledge of Mathematical Argumentation and Proving

This program of research will examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program?

Lead Organization(s): 
Award Number: 
1350802
Funding Period: 
Tue, 07/15/2014 to Sun, 06/30/2019
Full Description: 

The field of mathematics teacher education needs a strong understanding of pre-service teachers' knowledge about the practice of mathematical argumentation and proof, including the development of this knowledge, to effectively move pre-service teachers toward a more sophisticated understanding and enactment of this practice with their own students. The integrated research and educational activities will contribute to the knowledge base teacher education programs need to effectively prepare middle school teachers for meeting the challenges of how to make reasoning and proof an integral aspect of instructional practice. The research results have the potential to guide teacher educators and educational researchers concerned with strengthening pre-service teachers' ability to make reasoning and proving an integral aspect of school mathematics. Consequently, pre-service teachers will be better equipped to develop mathematical reasoning skills in their future students and to support their students in learning mathematics with understanding. Given this country's growing need for a competent STEM workforce, helping all students learn mathematics in a way that supports deeper understanding is a priority. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

The objective of this program of research is to examine how middle school pre-service teachers' knowledge of mathematical argumentation and proving develops in teacher preparation programs. The project explores the research question: What conceptions of mathematical reasoning and proving do middle school preservice teachers hold in situations that foster reasoning about change, proportionality, and proportional relationships, as they enter their mathematics course sequence in their teacher preparation program, and how do these conceptions evolve throughout the program? This development will be studied along three dimensions: (a) pre-service teachers' own ability to formulate mathematical arguments, (b) their ability to analyze mathematical arguments, and (c) their ability to analyze situations that engage students in mathematical argumentation and proving. Cross-sectional and longitudinal studies of 60 pre-service teachers' models, or systems of interpretation, of mathematical argumentation and proof in curricular context that foster reasoning about change, proportionality and proportional relationships will be conducted to provide an understanding of the trajectory that captures how pre-service teachers develop their knowledge of mathematical argumentation and proving throughout their university mathematics preparation program and into their student teaching.

CAREER: Advancing Secondary Mathematics Teachers' Quantitative Reasoning

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge.

Award Number: 
1350342
Funding Period: 
Tue, 07/15/2014 to Sun, 06/30/2019
Full Description: 

Science, Technology, Engineering and Mathematics [STEM] and STEM education researchers and policy documents have directed mathematics educators at all levels to increase emphasis on quantitative reasoning so that students are prepared for continued studies in mathematics and other STEM fields. Often, teachers are not sufficiently prepared to support their students' quantitative reasoning. The products generated by this project fill a need for concrete materials at the pre-service level that embody research-based knowledge in the area of quantitative reasoning. The accessible collection of research and educational products provides a model program for changing prospective mathematics teachers' quantitative reasoning that is adoptable at other institutions across the nation. Additionally, the support of early CAREER scholars in mathematics education will add to the capacity of the country to address issues in mathematics education in the future.

Advancing Reasoning addresses the lack of materials for teacher education by investigating pre-service secondary mathematics teachers' quantitative reasoning in the context of secondary mathematics concepts including function and algebra. The project extends prior research in quantitative reasoning to develop differentiated instructional experiences and curriculum that support prospective teachers' quantitative reasoning and produce shifts in their knowledge. Three interrelated research questions guide the project: (i) What aspects of quantitative reasoning provide support for prospective teachers' understanding of major secondary mathematics concepts such as function and algebra? (ii) How can instruction support prospective teachers' quantitative reasoning in the context of the teaching and learning of major secondary mathematics concepts such as function and algebra? (iii) How do the understandings prospective teachers hold upon entering a pre-service program support or inhibit their quantitative reasoning? Advancing Reasoning addresses these questions by enacting an iterative, multi-phase study with 200 prospective teachers enrolled in a secondary mathematics education content course over 5 years. The main phase of the study implements a series of classroom design experiments to produce knowledge on central aspects of prospective teachers' quantitative reasoning and the instructional experiences that support such reasoning. By drawing this knowledge from a classroom setting, Advancing Reasoning contributes research-based and practice-driven deliverables that improve the teaching and learning of mathematics.

Moving Next Generation Science Standards into Practice: A Middle School Ecology Unit and Teacher Professional Development Model

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. This project will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices.

Award Number: 
1418235
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

Schools and teachers face unprecedented challenges in meeting the ambitious goals of integrating core interdisciplinary science ideas with science and engineering practices as described in new standards. The American Museum of Natural History (AMNH), in collaboration with the University of Connecticut (UConn), and the Lawrence Hall of Science (the Hall), will develop a middle school ecology unit and related teacher professional development that will help high-need and urban middle school students, including English Language Learners, understand these ideas and related practices. Teachers will be supported through professional development that is directly linked to the curriculum and is designed to develop their science content knowledge as well as their knowledge of how to teach the curriculum. The project builds on existing AMNH resources that include video and text passages supported with literacy strategies, online interactive data tools to plan and carry out investigations, and prior research on these resources used with teachers in professional development and with students in classrooms. In addition to serving the schools, teachers and students who directly participate, the project's deliverables include the ecology unit, teacher professional development, assessment tools, and a model for designing such comprehensives science programs that relate to NGSS.

The curriculum unit will be modeled after the Biological Sciences Curriculum Study (BSCS) 5E model that will use the 5 Phases (Engage, Explore, Explain, Elaborate, and Evaluate) for students to work through with each of five themes: Ecological Communities, Food Webs, A River Ecosystem, Zebra Mussel Invasion, and Monitoring Human Impact. Teachers will participate in 12 days of professional development that will introduce the program's pedagogical approach (the 5E model) and how it reflects NGSS, with teachers having significant time to learn the science, try out the activities, learn how to facilitate the program, provide feedback on the program as part of the evaluation, and reflect on their practice. The initial approach to the curriculum and teacher professional development will be designed in Year 1 and then iteratively revised and evaluated in Years 2-4 through formative evaluation that focuses on curriculum PD, and measures of student and teacher outcomes. The evaluation will assess the contribution of teacher science and pedagogical knowledge to increases in student knowledge. The evaluation findings and assessment tools developed for the project will provide the foundation for a future efficacy study. The project is one of a relatively small number of projects funded through NSF's DRK-12 program that directly addresses the need for NGSS-related learning resources. The project's learning resources, assessment tools, and model for designing NGSS-related and comprehensive science programs will be shared through professional publications, conference and workshop presentations, and liaison with organizations active in developing new resources bring NGSS into practice.

Re-Imagining Video-based Online Learning

Despite the tremendous growth in the availability of mathematics videos online, little research has investigated student learning from them. The goal of this exploratory project is to create, investigate, and provide evidence of promise for a model of online videos that embodies a more expansive vision of both the nature of the content and the pedagogical approach than is currently represented in YouTube-style lessons.

Award Number: 
1416789
Funding Period: 
Mon, 09/01/2014 to Fri, 08/31/2018
Full Description: 

The goal of this exploratory project is to create, investigate, and provide evidence of promise for a model of online videos that embodies a more expansive vision of both the nature of the content and the pedagogical approach than is currently represented in YouTube-style lessons. This goal is pursued through the development and research of videos for two mathematics units--one focused on proportional reasoning at the middle grades level and the other focused on quadratic functions at the high school level, using an approach that could be applied to any STEM content area. The media attention on the Khan Academy and the wide array of massive open online courses has highlighted the internet phenomenon of widespread accessibility to mathematics lessons, which offer many benefits, such as student control of the pace of learning and earlier access to advanced topics than is often possible in public schools. Yet, despite the huge range of topics presented in online videos, there is surprising uniformity in the procedural emphasis of the content and in the expository mode of presentation. Moving beyond the types of videos now used, primarily recorded lectures that replicate traditional classroom experience, this project advances our understanding about how students learn from video and from watching others learn - vicarious learning - as opposed to watching an expert. This project addresses the need for an alternative approach. Rather than relying on an expository style, the videos produced for this project focus on pairs of students, highlighting their dialogue, explanations and alternative conceptions. This alternative has the potential to contribute to learning sciences and to develop a usable tool.

Despite the tremendous growth in the availability of mathematics videos online, little research has investigated student learning from them. This project develops dialogue-intensive videos in which children justify and explain their reasoning, elucidate their own comprehension of mathematical situations, and argue for and against various ideas and strategies. According to Wegerif (2007), such vicarious participation in a dialogic community may help learners take the perspective of another in a discussion, thus "expanding the spaces of learning" through digital technology. Consequently, a major contribution of this proposed work will be a set of four vicarious learning studies. Two qualitative studies investigate the particular meanings and ways of reasoning that learners appropriate from observing the dialogue of the students in the videos, as well as the learning trajectories of vicarious learners for each unit. Two quantitative studies isolate and test the effectiveness of the dialogic and the conceptual components of the model by comparing learning outcome gains for (a) conceptual dialogic versus conceptual expository conditions, and (b) dialogic conceptual versus dialogic procedural conditions. Another mark of the originality of the proposed work is the set of vicarious learning studies that contributes to the emerging literature across several dimensions, by (a) using secondary students rather than undergraduates; (b) exploring longer periods of learning, which is more conducive to deeper understanding; and (c) examining the nature of reasoning that is possible, not just the effectiveness of the approach.

Promoting Active Learning Strategies in Biology (PALS)

This project examines the potential of two research-based and college-tested active learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction by adapting the strategies for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science.

Award Number: 
1417735
Funding Period: 
Mon, 09/01/2014 to Thu, 08/31/2017
Full Description: 

The use of active learning strategies has long been advocated in the sciences, but high school science instruction remains highly didactic across the country. This project addresses this longstanding concern by examining the potential of two research-based and college-tested learning strategies in high school classrooms: Process Oriented Guided Inquiry Learning (POGIL) and Peer Instruction. The POGIL strategy was developed initially for chemistry classes, and Peer Instruction was developed within physics classes. These two learning strategies will be adapted for implementation in biology classes, with the goal of determining which strategy shows the most promise for increasing student achievement and attitudes toward science. The project will also study the influence of these instructional strategies on teacher beliefs about active learning and the contributions of these beliefs on student success in biology. Creation of the professional development model and materials for this project bring together high school biology teachers, university biology faculty, and science education specialists.

The project will conduct design and development research to iteratively develop the instructional materials through a collaboration of high school teachers and college faculty members experienced in using the instructional approaches being compared. Adaptation of the learning strategies for use in biology was chosen because biology is the science course most often taught across schools in the country, and it is required for graduation in the state where this project is being conducted. To compare the outcomes of the two instructional approaches, 42 teacher pairs will be randomly assigned to one of three treatment groups: POGIL, Peer Instruction, or traditional instruction. Outcomes of the instructional approaches will be measured in terms of conceptual gains among teachers and students, attitudes toward science, personal agency beliefs, and instructional implementation fidelity.

GRIDS: Graphing Research on Inquiry with Data in Science

The Graphing Research on Inquiry with Data in Science (GRIDS) project will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

Award Number: 
1418423
Funding Period: 
Mon, 09/01/2014 to Sat, 08/31/2019
Full Description: 

The Graphing Research on Inquiry with Data in Science (GRIDS) project is a four-year full design and development proposal, addressing the learning strand, submitted to the DR K-12 program at the NSF. GRIDS will investigate strategies to improve middle school students' science learning by focusing on student ability to interpret and use graphs. In middle school math, students typically graph only linear functions and rarely encounter features used in science, such as units, scientific notation, non-integer values, noise, cycles, and exponentials. Science teachers rarely teach about the graph features needed in science, so students are left to learn science without recourse to what is inarguably a key tool in learning and doing science. GRIDS will undertake a comprehensive program to address the need for improved graph comprehension. The project will create, study, and disseminate technology-based assessments, technologies that aid graph interpretation, instructional designs, professional development, and learning materials.

GRIDS will start by developing the GRIDS Graphing Inventory (GGI), an online, research-based measure of graphing skills that are relevant to middle school science. The project will address gaps revealed by the GGI by designing instructional activities that feature powerful digital technologies including automated guidance based on analysis of student generated graphs and student writing about graphs. These materials will be tested in classroom comparison studies using the GGI to assess both annual and longitudinal progress. Approximately 30 teachers selected from 10 public middle schools will participate in the project, along with approximately 4,000 students in their classrooms. A series of design studies will be conducted to create and test ten units of study and associated assessments, and a minimum of 30 comparison studies will be conducted to optimize instructional strategies. The comparison studies will include a minimum of 5 experiments per term, each with 6 teachers and their 600-800 students. The project will develop supports for teachers to guide students to use graphs and science knowledge to deepen understanding, and to develop agency and identity as science learners.

Pages

Subscribe to Preservice Teachers