Preservice Teachers

Prospective Elementary Teachers Making for Mathematical Learning

This study takes an innovative approach to documenting how teacher knowledge can be enhanced by incorporating a design experience into pre-service mathematics education. Teachers will use digital and fabrication technologies (e.g., 3D printers and laser cutters) to design and use manipulatives for K-6 mathematics learning. The goals of the project include describing how this experience influences the prospective teachers' knowledge and identities while creating curriculum for teacher education.

Lead Organization(s): 
Award Number: 
1812887
Funding Period: 
Sat, 09/01/2018 to Mon, 08/31/2020
Full Description: 

What teachers know and believe is central to what they can do in classrooms. This study takes an innovative approach to documenting how teacher knowledge can be enhanced by incorporating a design experience into pre-service mathematics education. The study's participating prospective teachers will use digital and fabrication technologies (e.g., 3D printers and laser cutters) to design and use manipulatives for K-6 mathematics learning. The goals of the project include describing how this experience influences the prospective teachers' knowledge and identities while creating curriculum for teacher education. Also, because more schools and students have access to 3D fabrication capabilities, teacher education can utilize these capabilities to prepare teachers to take advantage of these resources. Prior research by the team demonstrated how the process of making a manipulative can support prospective teachers in learning about mathematics and how to teach elementary mathematics concepts. The project will generate resources for other elementary teacher education programs and research about how prospective elementary teachers learn mathematics for teaching.

The project includes three research questions. First, what forms of knowledge are brought to bear as prospective elementary teachers make new manipulatives and write corresponding tasks to support the teaching and learning of mathematics? Second, how does prospective elementary teachers' knowledge for teaching mathematics develop as they make new manipulatives and write tasks to support the teaching and learning of mathematics? Third, as prospective elementary teachers make new manipulatives and write tasks to support the teaching and learning of mathematics, how do they see themselves in relation to the making, the mathematics, and the mathematics teaching? The project will employ a design-based research methodology with cycles of design, enactment, analysis and redesign to create curriculum modules for teacher education focused on making mathematics manipulatives. Data collection will include video recording of class sessions, participant observation, field notes, artifacts from the participants' design of manipulatives, and assessments of mathematical knowledge for teaching. A qualitative analysis will use multiple frameworks from prior research on mathematics teacher knowledge and identity development.

Developing Preservice Teachers' Capacity to Teach Students with Learning Disabilities in Algebra I

Project researchers are training pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The trainings emphasize the use of gestures and strategic questioning to support students with learning disabilities and to build students’ understanding in Algebra 1.

Project Email: 
Lead Organization(s): 
Award Number: 
1813903
Funding Period: 
Wed, 08/01/2018 to Sat, 07/31/2021
Full Description: 

This project is implementing a program to train pre-service teachers to tutor students with learning disabilities in Algebra 1, combining principles from special education, mathematics education, and cognitive psychology. The project trains tutors to utilize gestures and strategic questioning to support students with LD to build connections between procedural knowledge and conceptual understanding in Algebra 1, while supporting students’ dispositions towards doing mathematics. The training will prepare tutors to address the challenges that students with LD often face—especially challenges of working memory and processing—and to build on their strengths as they engage with Algebra 1. The project will measure changes in tutors’ ability to use gestures and questioning to support the learning of students with LD during and after the completion of our training. It will also collect and analyze data on the knowledge and dispositions of students with LD in Algebra 1 for use in the ongoing refinement of the training and in documenting the impact of the training program.

 

CAREER: Mechanisms Underlying the Relation Between Mathematical Language and Mathematical Knowledge

The purpose of this project is to examine the process by which math language instruction improves learning of mathematics skills in order to design and translate the most effective interventions into practical classroom instruction.

Lead Organization(s): 
Award Number: 
1749294
Funding Period: 
Wed, 08/01/2018 to Mon, 07/31/2023
Full Description: 

Successful development of numeracy and geometry skills during preschool provides a strong foundation for later academic and career success. Recent evidence shows that learning math language (e.g., concepts such as more, few, less, near, before) during preschool supports this development. The purpose of this Faculty Early Career Development (CAREER) project is to examine the process by which math language instruction improves learning of mathematics skills in order to design and translate the most effective interventions into practical classroom instruction. The first objective of this project is to examine if quantitative and spatial math language effect the development of different aspects of mathematics performance (e.g., numeracy, geometry). The second objective is to examine how quantitative math language versus numeracy instruction, either alone or in combination, effect numeracy development. The findings from this study will not only be used to improve theoretical understanding of how math language and mathematics skills develop, but the instructional materials developed for this study will also result in practical tools for enhancing young children's math language and mathematics skills.

This project is focused on evaluating the role of early math language skills in the acquisition of early mathematics skills. Two randomized control trials (RCTs) will be conducted. The first RCT will be used to evaluate the effects of different types of math language instruction (quantitative, spatial) on distinct aspects of mathematics (numeracy, geometry). It is expected that quantitative language instruction will improve numeracy skills and spatial language instruction will improve geometry skills. The second RCT will be used to examine the unique and joint effects of quantitative language instruction and numeracy instruction on children's numeracy skills. It is expected that both types of instruction alone will be sufficient to generate improvement on numeracy outcomes compared to an active control group, but that the combination of the two will result in enhanced numeracy performance compared to either alone. Educational goals will be integrated with and supported through engaging diverse groups of undergraduate and graduate students in hands-on research experiences, training pre- and in-service teachers on mathematical language instruction, and building collaborative relationships with early career researchers. Intervention materials including storybooks developed for the project and pre- and in-service teacher training/lesson plan materials will be made available at the completion of the project.

Developing and Validating Assessments to Measure and Build Elementary Teachers' Content Knowledge for Teaching about Matter and Its Interactions within Teacher Education Settings (Collaborative Research: Hanuscin)

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

Partner Organization(s): 
Award Number: 
1814275
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its fundamental purpose is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings. The selection of this topic will facilitate the development of a proof-of-concept to determine if and how CKT assessments can be developed and used to measure and build elementary teachers' CKT. Also, it will facilitate rapid and targeted refinement of an evidence-centered design process that could be applied to other science topics. Plans are to integrate CKT assessments and related resources into teacher education courses to support the ability of teachers to apply their content knowledge to the work of teaching and learning science. The project will combine efforts from prior projects and engage in foundational research to examine the nature of teachers' CKT and to build theories and hypotheses about the productive use and design of CKT assessment materials to support formative and summative uses. Likewise, the project will create a set of descriptive cases highlighting the use of these tools. Understanding how CKT science assessments can be leveraged as summative tools to evaluate current efforts, and as formative tools to build elementary teachers' specialized, practice-based knowledge will be the central foci of this effort.

The main research questions will be: (1) What is the nature of elementary science teachers' CKT about matter and its interactions?; and (2) How can the development of prospective elementary teachers' CKT be supported within teacher education? To address the research questions, the study will employ a mixed-methods, design-based research approach to gather various sources of validity evidence to support the formative and summative use of the CKT instrument, instructional tasks, and supporting materials. The project will be organized around two main research and development strands. Strand One will build an empirically grounded understanding of the nature of elementary teachers' CKT. Strand Two will focus on developing and studying how CKT instructional tasks can be used formatively within teacher education settings to build elementary teachers' CKT. In addition, the project will refine a conceptual framework that identifies the science-specific teaching practices that comprise the work of teaching science. This will be used as well to assess the CKT that teachers leverage when recognizing, understanding, and responding to the content-intensive practices that they engage in as they teach science. To that end, the study will build on two existing frameworks from prior NSF-funded work. The first was originally developed to create CKT assessments for elementary and middle school teachers in English Language Arts and mathematics. The second focuses on the content challenges that novice elementary science teachers face. It is organized by the instructional tools and practices that elementary science teachers use, such as scientific models and explanations. These instructional practices cut across those addressed in the Next Generation Science Standards' (NGSS; Lead States, 2013) disciplinary strands. The main project's outcomes will be knowledge that builds and refines theories about the nature of elementary teachers' CKT, and how CKT elementary science assessment materials can be designed productively for formative and summative purposes. The project will also result in the development of a suite of valid and reliable assessments that afford interpretations on CKT matter proficiency and can be used to monitor elementary teachers learning. An external advisory board will provide formative and summative feedback on the project's activities and progress.


Project Videos

2020 STEM for All Video Showcase

Title: Building Content Knowledge for Teaching about Matter

Presenter(s): Jamie Mikeska, Emily Borda, Katherine Castellano, Dante Cisterna, Dan Hanley, Debi Hanuscin, & Josie Melton


Developing and Validating Assessments to Measure and Build Elementary Teachers' Content Knowledge for Teaching about Matter and Its Interactions within Teacher Education Settings (Collaborative Research: Mikeska)

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813254
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its fundamental purpose is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings. The selection of this topic will facilitate the development of a proof-of-concept to determine if and how CKT assessments can be developed and used to measure and build elementary teachers' CKT. Also, it will facilitate rapid and targeted refinement of an evidence-centered design process that could be applied to other science topics. Plans are to integrate CKT assessments and related resources into teacher education courses to support the ability of teachers to apply their content knowledge to the work of teaching and learning science. The project will combine efforts from prior projects and engage in foundational research to examine the nature of teachers' CKT and to build theories and hypotheses about the productive use and design of CKT assessment materials to support formative and summative uses. Likewise, the project will create a set of descriptive cases highlighting the use of these tools. Understanding how CKT science assessments can be leveraged as summative tools to evaluate current efforts, and as formative tools to build elementary teachers' specialized, practice-based knowledge will be the central foci of this effort.

The main research questions will be: (1) What is the nature of elementary science teachers' CKT about matter and its interactions?; and (2) How can the development of prospective elementary teachers' CKT be supported within teacher education? To address the research questions, the study will employ a mixed-methods, design-based research approach to gather various sources of validity evidence to support the formative and summative use of the CKT instrument, instructional tasks, and supporting materials. The project will be organized around two main research and development strands. Strand One will build an empirically grounded understanding of the nature of elementary teachers' CKT. Strand Two will focus on developing and studying how CKT instructional tasks can be used formatively within teacher education settings to build elementary teachers' CKT. In addition, the project will refine a conceptual framework that identifies the science-specific teaching practices that comprise the work of teaching science. This will be used as well to assess the CKT that teachers leverage when recognizing, understanding, and responding to the content-intensive practices that they engage in as they teach science. To that end, the study will build on two existing frameworks from prior NSF-funded work. The first was originally developed to create CKT assessments for elementary and middle school teachers in English Language Arts and mathematics. The second focuses on the content challenges that novice elementary science teachers face. It is organized by the instructional tools and practices that elementary science teachers use, such as scientific models and explanations. These instructional practices cut across those addressed in the Next Generation Science Standards' (NGSS; Lead States, 2013) disciplinary strands. The main project's outcomes will be knowledge that builds and refines theories about the nature of elementary teachers' CKT, and how CKT elementary science assessment materials can be designed productively for formative and summative purposes. The project will also result in the development of a suite of valid and reliable assessments that afford interpretations on CKT matter proficiency and can be used to monitor elementary teachers learning. An external advisory board will provide formative and summative feedback on the project's activities and progress.


Project Videos

2020 STEM for All Video Showcase

Title: Building Content Knowledge for Teaching about Matter

Presenter(s): Jamie Mikeska, Emily Borda, Katherine Castellano, Dante Cisterna, Dan Hanley, Debi Hanuscin, & Josie Melton


Master of Arts in Teaching Program at the American Museum of Natural History

Principal Investigator: 

Wallace, J. (2014, March). Master of Arts in Teaching Program at the American Museum of Natural History. Poster presented at the Noyce Northeast Regional Conference, Philadelphia, PA.

Click image to preview: 
Discipline / Topic: 

Investigating science teaching core practices in high-needs urban settings

Principal Investigator: 

Howes, E., & Wallace, J. (2017, July). Investigating science teaching core practices in high-needs urban settings. Poster presented at the 2017 NOYCE Summit, Washington, DC.

Click image to preview: 
Discipline / Topic: 

Mathematical Learning via Architectural Design and Modeling Using E-Rebuild

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The project will examine how to collect data about students' learning from data generated as they play the game, how students learn mathematics using the simulation, and how the simulation can be included in middle school mathematics learning.

Lead Organization(s): 
Award Number: 
1720533
Funding Period: 
Tue, 08/01/2017 to Sat, 07/31/2021
Full Description: 

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. There is a need to connect mathematics to real world contexts and problems. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The learning platform will be flexible so teachers can customize tasks for their students. The project will examine how to collect data about students' learning from data generated as they play the game. The project will explore how students learn mathematics using the simulation and how the simulation can be included in middle school mathematics learning.

The project includes two major research questions. First, how will the design of a scalable game-based, design-centered learning platform promote coordination and application of math representation for problem solving? Second, how and under what implementation circumstances will using a scalable architectural game-based learning platform improve students multi-stranded mathematical proficiency (i.e., understanding, problem solving and positive disposition)? A key feature of the project is stealth-assessment or data collected and logged as students use the architectural simulation activities that can be used to understand their mathematics learning. The project uses a design-based research approach to gather data from students and teachers that will inform the design of the learning environment. The qualitative and quantitative data will also be used to understand what students are learning as they play the game and how teachers are interacting with their students. The project will include a mixed methods study to compare classrooms using the architectural activities to classrooms that are using typical activities.


Project Videos

2020 STEM for All Video Showcase

Title: E-Rebuild: Scalable Architectural Game for Math Learning

Presenter(s): Fengfeng Ke, Chih-Pu Dai, & Luke West


Building a Community of Science Teacher Educators to Prepare Novices for Ambitious Science Teaching

This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. It is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching.

Lead Organization(s): 
Award Number: 
1719950
Funding Period: 
Tue, 08/01/2017 to Tue, 07/31/2018
Full Description: 

There is a growing consensus among science teacher educators of a need for a shared, research-based vision of accomplished instructional practice, and for teacher education pedagogies that can effectively prepare preservice science teachers to support the science learning of students from all backgrounds. This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. This conference is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching. The conference has two goals. The first goal is to develop a shared vision and language about effective pedagogy of science teacher preparation, focusing on ambitious science teaching and practice-based approaches to science teacher preparation. The second goal is to initiate a professional community that can generate, test, revise, and disseminate a set of resources (curriculum materials, tools, videos, models of teacher educator pedagogies, etc.) to support teacher educators.

There are immediate and long-term broader impacts that will result from this conference. One immediate impact is that this conference will set forth an actionable research agenda for the participants and the field to take up around ambitious science teaching and practice-based teacher education. Such an agenda will help shape new work, involving institutional collaborations,teacher preparation programs, and national organizations. Such an outcome has the potential to immediately impact the work of the conference participants and their own teacher preparation programs. In the long-term, this conference provides an opportunity for the participants to consider how to use ambitious science teaching to address issues of equity and social justice in science education and schools. In addition, the broader impacts of this conference will be to spread a vision of science teaching and practice-based teacher preparation in which students' ideas and experiences are the raw material of teachers' work.

Pages

Subscribe to Preservice Teachers