Preservice Teachers

Developing and Validating Assessments to Measure and Build Elementary Teachers' Content Knowledge for Teaching about Matter and Its Interactions within Teacher Education Settings (Collaborative Research: Mikeska)

The fundamental purpose of this project is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1813254
Funding Period: 
Sun, 07/01/2018 to Thu, 06/30/2022
Full Description: 

This is an Early-Stage Design and Development collaborative effort submitted to the assessment strand of the Discovery Research PreK-12 (DRK-12) Program. Its fundamental purpose is to examine and gather initial validity evidence for assessments designed to measure and build kindergarten-fifth grade science teachers' content knowledge for teaching (CKT) about matter and its interactions in teacher education settings. The selection of this topic will facilitate the development of a proof-of-concept to determine if and how CKT assessments can be developed and used to measure and build elementary teachers' CKT. Also, it will facilitate rapid and targeted refinement of an evidence-centered design process that could be applied to other science topics. Plans are to integrate CKT assessments and related resources into teacher education courses to support the ability of teachers to apply their content knowledge to the work of teaching and learning science. The project will combine efforts from prior projects and engage in foundational research to examine the nature of teachers' CKT and to build theories and hypotheses about the productive use and design of CKT assessment materials to support formative and summative uses. Likewise, the project will create a set of descriptive cases highlighting the use of these tools. Understanding how CKT science assessments can be leveraged as summative tools to evaluate current efforts, and as formative tools to build elementary teachers' specialized, practice-based knowledge will be the central foci of this effort.

The main research questions will be: (1) What is the nature of elementary science teachers' CKT about matter and its interactions?; and (2) How can the development of prospective elementary teachers' CKT be supported within teacher education? To address the research questions, the study will employ a mixed-methods, design-based research approach to gather various sources of validity evidence to support the formative and summative use of the CKT instrument, instructional tasks, and supporting materials. The project will be organized around two main research and development strands. Strand One will build an empirically grounded understanding of the nature of elementary teachers' CKT. Strand Two will focus on developing and studying how CKT instructional tasks can be used formatively within teacher education settings to build elementary teachers' CKT. In addition, the project will refine a conceptual framework that identifies the science-specific teaching practices that comprise the work of teaching science. This will be used as well to assess the CKT that teachers leverage when recognizing, understanding, and responding to the content-intensive practices that they engage in as they teach science. To that end, the study will build on two existing frameworks from prior NSF-funded work. The first was originally developed to create CKT assessments for elementary and middle school teachers in English Language Arts and mathematics. The second focuses on the content challenges that novice elementary science teachers face. It is organized by the instructional tools and practices that elementary science teachers use, such as scientific models and explanations. These instructional practices cut across those addressed in the Next Generation Science Standards' (NGSS; Lead States, 2013) disciplinary strands. The main project's outcomes will be knowledge that builds and refines theories about the nature of elementary teachers' CKT, and how CKT elementary science assessment materials can be designed productively for formative and summative purposes. The project will also result in the development of a suite of valid and reliable assessments that afford interpretations on CKT matter proficiency and can be used to monitor elementary teachers learning. An external advisory board will provide formative and summative feedback on the project's activities and progress.

Master of Arts in Teaching Program at the American Museum of Natural History

Principal Investigator: 

Wallace, J. (2014, March). Master of Arts in Teaching Program at the American Museum of Natural History. Poster presented at the Noyce Northeast Regional Conference, Philadelphia, PA.

Click image to preview: 
Discipline / Topic: 

Investigating science teaching core practices in high-needs urban settings

Principal Investigator: 

Howes, E., & Wallace, J. (2017, July). Investigating science teaching core practices in high-needs urban settings. Poster presented at the 2017 NOYCE Summit, Washington, DC.

Click image to preview: 
Discipline / Topic: 

Mathematical Learning via Architectural Design and Modeling Using E-Rebuild

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The project will examine how to collect data about students' learning from data generated as they play the game, how students learn mathematics using the simulation, and how the simulation can be included in middle school mathematics learning.

Lead Organization(s): 
Award Number: 
1720533
Funding Period: 
Tue, 08/01/2017 to Sat, 07/31/2021
Full Description: 

This project will explore the learning of mathematics through architectural tasks in an online simulation game, E-Rebuild. There is a need to connect mathematics to real world contexts and problems. In the game-based architectural simulation, students will be able to complete tasks such as building and constructing structures while using mathematics and problem solving. The learning platform will be flexible so teachers can customize tasks for their students. The project will examine how to collect data about students' learning from data generated as they play the game. The project will explore how students learn mathematics using the simulation and how the simulation can be included in middle school mathematics learning.

The project includes two major research questions. First, how will the design of a scalable game-based, design-centered learning platform promote coordination and application of math representation for problem solving? Second, how and under what implementation circumstances will using a scalable architectural game-based learning platform improve students multi-stranded mathematical proficiency (i.e., understanding, problem solving and positive disposition)? A key feature of the project is stealth-assessment or data collected and logged as students use the architectural simulation activities that can be used to understand their mathematics learning. The project uses a design-based research approach to gather data from students and teachers that will inform the design of the learning environment. The qualitative and quantitative data will also be used to understand what students are learning as they play the game and how teachers are interacting with their students. The project will include a mixed methods study to compare classrooms using the architectural activities to classrooms that are using typical activities.

Building a Community of Science Teacher Educators to Prepare Novices for Ambitious Science Teaching

This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. It is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching.

Lead Organization(s): 
Award Number: 
1719950
Funding Period: 
Tue, 08/01/2017 to Tue, 07/31/2018
Full Description: 

There is a growing consensus among science teacher educators of a need for a shared, research-based vision of accomplished instructional practice, and for teacher education pedagogies that can effectively prepare preservice science teachers to support the science learning of students from all backgrounds. This conference will bring together a group of teacher educators to focus on preservice teacher education and a shared vision of instruction called ambitious science teaching. This conference is a critical first step toward building a community of teacher educators who can collectively share and refine strategies, tools, and practices for preparing preservice science teachers for ambitious science teaching. The conference has two goals. The first goal is to develop a shared vision and language about effective pedagogy of science teacher preparation, focusing on ambitious science teaching and practice-based approaches to science teacher preparation. The second goal is to initiate a professional community that can generate, test, revise, and disseminate a set of resources (curriculum materials, tools, videos, models of teacher educator pedagogies, etc.) to support teacher educators.

There are immediate and long-term broader impacts that will result from this conference. One immediate impact is that this conference will set forth an actionable research agenda for the participants and the field to take up around ambitious science teaching and practice-based teacher education. Such an agenda will help shape new work, involving institutional collaborations,teacher preparation programs, and national organizations. Such an outcome has the potential to immediately impact the work of the conference participants and their own teacher preparation programs. In the long-term, this conference provides an opportunity for the participants to consider how to use ambitious science teaching to address issues of equity and social justice in science education and schools. In addition, the broader impacts of this conference will be to spread a vision of science teaching and practice-based teacher preparation in which students' ideas and experiences are the raw material of teachers' work.

Mobilizing Teachers to Increase Capacity and Broaden Women's Participation in Physics (Collaborative Research: Hannum)

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The aim is to mobilize high school physics teachers to "attract and recruit" female students into physics and engineering careers. The project will advance physics identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement.

Award Number: 
1720869
Funding Period: 
Mon, 05/15/2017 to Fri, 04/30/2021
Full Description: 

This project assesses the impact of scaling-up the teaching of physics and engineering to women students in grade levels 11 and 12, particularly in reference to retention. The problem of low participation of women in physics and engineering has been a topic of concern for decades. The persistent underrepresentation of women in physics and engineering is not just an equity issue but also reflects an unrealized talent pool that can help respond to current and future challenges faced by society. The aim is to mobilize high school physics teachers to "attract and recruit" female students into science (physics) and engineering careers. The fundamental issues that the project seeks is to affect increases in the number of females in physics and engineering careers using research-informed and field-tested classroom practices that improve female students' physics identity. The project will advance science (physics) identity research by testing research-based approaches/interventions with larger groups of teachers and connecting research to practice in ways that are both widely deployable and practical for teachers to implement. The project will also affect female participation in engineering since developing a physics identity is strongly related to choosing engineering. The core area teachers will be trained in addressing student identity as a physicist or engineer.

In this project, two research universities (Florida International University, Texas A&M-Commerce) and the two largest national organizations in physics (American Physical Society and American Association of Physics Teachers) will work together using approaches/interventions drawn from prior research results that will be tested with teachers in three states (24 teachers, 8 in each state) using an experimental design with control and treatment groups. The project proposes three phases: 1. Refine already established interventions for improving female physics identity for use on a massive national level which will be assessed through previously validated and reliable surveys and sound research design; 2. Launch a massive national campaign involving workshops, training modules, and mass communication approaches to reach and attempt to mobilize 16,000 of the 27,000 physics teachers nationwide to attract and recruit at least one female student to physics using the intervention approaches refines in phase 1 and other classroom approaches shown to improve female physics identity; and 3. Evaluate of the success of the campaign through surveys of high school physics teachers (subjective data) and data from the Higher Education Research Institute to monitor female student increases in freshmen declaring a physics major during the years following the campaign (objective data). The interventions will focus on developing female students' physics identity, a construct which has been found to be strongly related to career choice and persistence in physics. The project has the potential to reduce or eliminate the gender gap in the field of physics. In addition, the increase in female physics identity is likely to also increase female representation in engineering majors. Therefore, the work will lay the groundwork for adapting similar methods for increasing under-representation of females in other disciplines. The societies involved (American Physical Society and American Association of Physics Teachers) are uniquely positioned within the discipline to ensure a successful campaign of information dissemination to physics teachers nationally and under-representation of females in other disciplines as well, engineering specifically.

Designing a Middle Grades Spatial Skills Curriculum

This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform.

Lead Organization(s): 
Award Number: 
1720801
Funding Period: 
Sat, 07/01/2017 to Tue, 06/30/2020
Full Description: 

The ability to make spatial judgements and visualize has been shown to be a strong indicator of students' future success in STEM-related courses. The project is innovative because it uses a widely available gaming environment, Minecraft, to examine spatial reasoning. Finding learning experiences which support students' spatial reasoning in an authentic and engaging way is a challenge in the field. This project will create a portable training system that can be easily deployed in middle grades (5th-7th grade) as a prototype for increasing students' spatial reasoning skills. The project will study gender differences in spatial reasoning and examine how learning experiences can be designed to develop spatial skills using Minecraft as a platform. The resources will incorporate hands-on learning and engage students in building virtual structures using spatial reasoning. The curriculum materials are being designed to be useful in other middle grades contexts.

The study is a design and development study that will design four training modules intended to improve spatial reasoning in the following areas: rotation, mental slicing, 2D to 3D transformation and perspective taking. The research questions are: (1) Does a Minecraft-based intervention that targets specific spatial reasoning tasks improve middle grade learners' spatial ability? (2) Does spatial skills growth differ by gender? The experimental design will compare the influence of the virtual spatial learning environment alone vs. the use of design challenges designed specifically for the spatial skills. The data collected will include assessments of spatial reasoning and feedback from teachers' who use the materials. The spatial skills measures will be administered as a pre-test, post-test, and six-month follow-up assessment to measure long term effects.

Algebra Project Mathematics Content and Pedagogy Initiative

This project will scale up, implement, and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework, which seeks to improve performance and participation in mathematics of students in distressed school districts, particularly low-income students from underserved populations.

Award Number: 
1621416
Funding Period: 
Thu, 09/15/2016 to Mon, 08/31/2020
Full Description: 

Algebra continues to serve as a gatekeeper and potential barrier for high school students. The Algebra Project Mathematics Content and Pedagogy Initiative (APMCPI) will scale up, implement and assess the efficacy of interventions in K-12 mathematics education based on the well-established Algebra Project (AP) pedagogical framework. The APMCPI project team is comprised of four HBCUs (Virginia State University, Dillard University, Xavier University, Lincoln University), the Southern Initiative Algebra Project (SIAP), and four school districts that are closely aligned with partner universities. The purpose of the Algebra Project is to improve performance and participation in mathematics by members of students in distressed school districts, particularly those with a large population of low-income students from underserved populations including African American and Hispanics. The project will provide professional development and implement the Algebra Project in four districts and study the impact on student learning. The research results will inform the nation's learning how to improve mathematics achievement for all children, particularly those in distressed inner-city school districts.

The study builds on a prior pilot project with a 74% increase in students who passed the state exam. In the early stages of this project, teachers in four districts closely associated with the four universities will receive Algebra Project professional development in Summer Teacher Institutes with ongoing support during the academic year, including a community development plan. The professional development is designed to help teachers combine mathematical problem solving with context-rich lessons, which both strengthen and integrate teachers' understanding of key concepts in mathematics so that they better engage their students. The project also will focus on helping teachers establish a framework for mathematically substantive, conceptually-rich and experientially-grounded conversations with students. The first year of the study will begin a longitudinal quasi-experimental, explanatory, mixed-method design. Over the course of the project, researchers will follow cohorts who are in grade-levels 5 through 12 in Year 1 to allow analyses across crucial transition periods - grades 5 to 6; grades 8 to 9; and grades 12 to college/workforce. Student and teacher data will be collected in September of Project Year 1, and in May of each project year, providing five data points for each student and teacher participant. Student data will include student attitude, belief, anxiety, and relationship to mathematics and science, in addition to student learning outcome measures. Teacher data will include content knowledge, attitudes and beliefs, and practices. Qualitative data will provide information on the implementation in both the experimental and control conditions. Analysis will include hierarchical linear modeling and multivariate analysis of covariance.

Building a Next Generation Diagnostic Assessment and Reporting System within a Learning Trajectory-Based Mathematics Learning Map for Grades 6-8

This project will build on prior funding to design a next generation diagnostic assessment using learning progressions and other learning sciences research to support middle grades mathematics teaching and learning. The project will contribute to the nationally supported move to create, use, and apply research based open educational resources at scale.

Award Number: 
1621254
Funding Period: 
Thu, 09/15/2016 to Sat, 08/31/2019
Full Description: 

This project seeks to design a next generation diagnostic assessment using learning progressions and other research (in the learning sciences) to support middle grades mathematics teaching and learning. It will focus on nine large content ideas, and associated Common Core State Standards for Mathematics. The PIs will track students over time, and work within school districts to ensure feasibility and use of the assessment system.

The research will build on prior funding by multiple funding agencies and address four major goals. The partnership seeks to address these goals: 1) revising and strengthening the diagnostic assessments in mathematics by adding new item types and dynamic tools for data gathering 2) studying alternative ways to use measurement models to assess student mathematical progress over time using the concept of learning trajectories, 3) investigating how to assist students and teachers to effectively interpret reports on math progress, both at the individual and the class level, and 4) engineering and studying instructional strategies based on student results and interpretations, as they are implemented within competency-based and personalized learning classrooms. The learning map, assessment system, and analytics are open source and can be used by other research and implementation teams. The project will exhibit broad impact due to the number of states, school districts and varied kinds of schools seeking this kind of resource as a means to improve instruction. Finally, the research project contributes to the nationally supported move to create, use, and apply research based open educational resources at scale.

Pages

Subscribe to Preservice Teachers