Preservice Teachers

CAREER: Investigation of Beginning Teachers' Expertise to Teach Mathematics via Reasoning and Proof

This project aims to develop the knowledge to teach reasoning and proving with secondary teacher candidates, and to follow them into they first years of independent practice to better understand how they are using that knowledge.  The goals of the project are to better understand how beginning teachers' knowledge, dispositions, and proof-related practices evolve over time, and how the sociocultural context and support structures of the schools teachers are in influences their teaching of reasoning and proving.

Lead Organization(s): 
Award Number: 
1941720
Funding Period: 
Mon, 06/01/2020 to Sat, 05/31/2025
Full Description: 

Supporting teachers in integrating reasoning and proving as a mathematical practice into secondary math classes is a persistent challenge. These disciplinary practices are challenging to learn and to teach, and are frequently taught in a procedural way that is limited to the context of high school geometry courses. While much is known about the robust nature of reasoning and proving in mathematics and the content knowledge needed to teach it, less is known about how beginning teachers develop that knowledge and how that knowledge is translated into classroom practice. This project aims to develop the knowledge to teach reasoning and proving with secondary teacher candidates, and to follow them into they first years of independent practice to better understand how they are using that knowledge. The goals of the project are to better understand how beginning teachers' knowledge, dispositions, and proof-related practices evolve over time, and how the sociocultural context and support structures of the schools teachers are in influences their teaching of reasoning and proving.

This project consists of three stages: preservice teacher preparation, the teaching internship, and novice teaching (the first two years of independent practice). During the teacher preparation phase, preservice teachers will take part in a capstone course focused on reasoning and proving, including enacting lessons in related to reasoning and proving in local middle schools. Using the Mathematical Knowledge for Teaching Proof framework, teachers' knowledge and dispositions towards reasoning and proving will be assessed through pre- and post-course assessment and surveys. Their example lessons will be video recorded and analyzed with respect to proof content, and they will engage in post-course interviews. In the next phase, during year-long student teaching internships, they will be asked to integrate reasoning and proving into their classroom practice. A set of target lessons will be recorded and analyzed, with full unit artifacts being collected and analyzed and pre- and post-unit interviews with the teacher conducted. The third phase follows teachers into their first two years of teaching practice and asks them to identify two units related to reasoning and proving to serve as data sources. The research team will conduct start and end of year interviews with the teachers, collect video recordings of the units and associated artifacts, administer a dispositions towards proof survey, and conduct pre- and post-unit interviews. Teachers will also participate in a professional learning community designed to support their teaching related to reasoning and proving. Data will be analyzed across the three phases using case study methodology to characterize patterns of knowledge, dispositions, and practice related o reasoning and proving. The project will also make available educational materials related to the capstone course and the professional learning community that will further support the development of teachers' knowledge and capacity for teaching reasoning and proving.

CAREER: Developing Elementary Preservice Teachers' Understandings and Abilities to Support Emerging Bilingual Students Scientific Sensemaking

This project will study ways to improve classroom instruction grounded in science practices to address inequities in science education for emerging bilingual students. The project will create research-based resources for teacher educators that focus on developing preservice elementary teachers' understanding and abilities to support emerging bilingual students' engagement in science practices.

Lead Organization(s): 
Award Number: 
1942912
Funding Period: 
Wed, 01/15/2020 to Tue, 12/31/2024
Full Description: 

This project will study ways to improve classroom instruction grounded in science practices to address inequities in science education for emerging bilingual students. Currently, many elementary school teachers are unfamiliar with science practices and are unprepared to teach emerging bilingual students since they never received training in either area. This project will address this lack of training and create research-based resources for teacher educators that focus on developing preservice elementary teachers' understanding and abilities to support emerging bilingual students' engagement in science practices. The study will be guided by the following objectives, which are to research: (1) the understandings of exemplary elementary teachers around science, language, and emerging bilingual students, and the relationship between these understandings and their instructional practices for supporting student sensemaking; (2) preservice teachers' understandings and practices related to supporting emerging bilingual students' sensemaking; (3) the development of an elementary science methods course, and educator resources, that support teacher learning about the role of language in science practices and approaches for supporting emerging bilingual students' sensemaking; and (4) the impact of this course, and its teacher educator resources, on preservice teachers' understandings and instructional practices. With little prior research having looked at the intersection of science and language learning, this project will advance knowledge in this regard.

Through a mixed-methods design, this project will investigate interrelated aspects of teacher understandings, teacher practice, and teacher learning around supporting emerging bilingual students' scientific sensemaking. Phase 1 of the project includes examining the instructional approaches around science practices of exemplary elementary school teachers that work in different types of school contexts with emerging bilingual students. Such strategies will go beyond traditional subject-matter knowledge and skills to include teacher encouragement of students using linguistic and nonlinguistic modes for communicating ideas; development of a deeper understanding of natural scientific phenomena; and engagement with and valuing of students' families, communities, and lived experiences. These combined efforts will capture and illustrate compelling examples of possible instantiations of engagement in science practices while being mindful of and responsive to emerging bilingual students' language assets, needs, and English development. Findings from Phase 1 will be used for Phase 2 of this project, which focuses on iteratively designing and analyzing a science methods course and resources for preservice teachers' pedagogical development across science and language learning.

CAREER: Spreading Computational Literacy Equitably via Integration of Computing in Preservice Teacher Preparation

This project will study the effect of integrating computing into preservice teacher programs. The project will use design-based research to explore how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and which computing concepts are most valuable for general computational literacy.

Lead Organization(s): 
Award Number: 
1941642
Funding Period: 
Wed, 07/01/2020 to Mon, 06/30/2025
Full Description: 

Understanding and creating computer-powered solutions to professional and personal problems enables people to be safe, resourceful, and inventive in the technology-infused world. To empower society, K-12 education is rapidly changing to spread computational literacy. To spread literacy equitably, schools must give all students opportunities to understand and design computing solutions. However, school schedules are already packed with required coursework, and most teachers graduated from programs that did not offer computer science courses. To spread computational literacy within the K-12 system, this project will integrate computing into all preservice teacher programs at Georgia State University. This approach enables all teachers, regardless of primary discipline or grade band, to introduce their students to authentic computing solutions within their discipline and use these solutions as powerful tools for teaching disciplinary content and practices. In addition, this approach ensures equity because all preservice teachers will learn to use computing tools through their regular coursework, rather than a self-selected group that chooses to engage in elective courses or professional development on the topic. The project will also require preservice teachers to use computing-integrated activities in their student teaching experiences. This requirement helps teachers gain the confidence to use the activities in their future classrooms and immediately benefits students in the Atlanta area, who are primarily from groups that are underrepresented in computing, including women, people of color and those who are from low-income families.

This project will study the effect of computing integration in preservice teacher programs on computational literacy. Preservice teacher programs, like K-12 school schedules, are loaded with subject area, pedagogy, and licensure requirements. Therefore, research needs to examine the most sustainable methods for integrating computing into these programs. The proposed project will use design-based research to explore 1) how to connect computing concepts and integration activities to teachers' subject area knowledge and teaching practice, and 2) which computing concepts are most valuable for general computational literacy. Because computational literacy is a relatively new literacy, the computing education community still debates which concepts are foundational for all citizens. By studying computing integration in a range of grade bands and subject areas, this project will explore which computing concepts are applicable in a wide range of subjects. These research activities will feed directly into the teaching objective of this project ? to provide computing education and computational literacy to all preservice teachers. This project will prepare about 1500 preservice teachers (more than half of them will be women) across all grades and subject areas who can teach computing integrated activities.

 

Looking Back and Looking Forward: Increasing the Impact of Educational Research on Practice

The focus of this conference is to carefully examine past and current research with an eye toward improving its impact on practice and to create concrete steps that could shape the nature and impact of mathematics education research.

Lead Organization(s): 
Award Number: 
1941494
Funding Period: 
Sun, 09/01/2019 to Mon, 08/31/2020
Full Description: 

The focus of the proposed conference is to carefully examine past and current research with an eye toward improving its impact on practice. This conference is designed to create concrete steps that could shape the nature and impact of mathematics education research for years to come. A diverse group of 50 participants will be invited to participate. Participants include 10 experienced K-12 educators whose perspectives will be used to anchor the conference in problems of practice. Other participants represent senior through more junior scholars who have demonstrated a commitment to addressing the disconnect between research and practice, along with technology experts to advise participants on capabilities and innovative uses of modern technologies for instruction, assessment and data management.

The overarching goal for the conference is to help the field of mathematics education think deeply about the most productive ways to answer the following questions: [1] Why hasn't past research had a more direct impact on practice? What can be learned from this historical analysis for future research? [2] What is a possible vision for research that would have a more direct impact on practice? What questions should be asked? What methods should be used? What concrete steps can be taken to launch the new research programs? [3] What are the implications of adopting new kinds of research programs? If they gain traction, how will such changes affect the broader education community and infrastructure, including preservice teacher education, teacher professional development, and the training of future researchers? How should the roles of researchers and teachers change? What incentive structures might motivate these changes? How will new programs of research interact with existing programs?

Design and Implementation of Immersive Representations of Practice

This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction by investigating how preservice teachers' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations.

Lead Organization(s): 
Award Number: 
1908159
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

Various researchers have documented that a large proportion of preservice teachers (PSTs) demonstrate less sophisticated professional knowledge for teaching both fractions and multiplication/division. Use of representations of practice (i.e., video, animation), and accompanying annotation technology, are effective in improving such professional knowledge, but PSTs continue to demonstrate a lack of precision in attending to or noticing particular mathematics in classroom scenarios. Fortunately, a new technology, 360-degree video, has emerged as a means of training novices for professional practice. This project will address the potential positive and negative impacts of using 360-degree video for bridging the gap between theory and practice in mathematics instruction. Specifically, PSTs demonstrate difficulty in synthesizing explicit knowledge learned in the college classroom with tacit professional knowledge situated in professional practice. The initial pilot of the technology resulted in PSTs demonstrating specific attention to the mathematics. The purpose of the project will be to investigate how PSTs' tacit and explicit professional knowledge are facilitated using immersive video technology and annotations (technologically embedded scaffolds). To do this, the project will examine where and what PSTs attend to when viewing 360-degree videos, both at a single point in the classroom and through incorporating multiple camera-perspectives in the same class. Additionally, the project will examine the role of annotation technology as applied to 360-degree video and the potential for variations in annotation technology. Findings will allow for an improved understanding of how teacher educators may support PSTs' tacit and explicit knowledge for teaching. The project will make video experiences publicly available and the platform used in the project to create these video experiences for teacher educators to use, create, and share 360-degree video experiences.

The project will examine how representations of practice can facilitate preservice teachers' professional knowledge for teaching fractions and multiplication/division. The project will: examine the effect of single versus multiple perspective in PSTs' professional knowledge; examine how PSTs use annotation technology in immersive video experiences, and its effect on PSTs' professional knowledge for teaching fractions and multiplication/division; and design a platform for teacher educators to create their own 360 video immersive experiences. Using an iterative design study process, the project team will develop and pilot single and multi-perspective 360-degree video experiences in grade 3-5 classrooms including developing a computer program to join multiple 360-degree videos. They will also develop an annotation tool to allow PSTs to annotate the single and multi-perspective 360 video experiences. Using a convergent mixed methods design, the project team will analyze the quantitative data using multiple regressions of pre-post data on mathematical knowledge for teaching and survey data on PSTs reported immersion and presence in viewing the videos to compare single and multi-perspective 360-degree video data. They will also qualitatively analyze heat maps generated from eye tracking, written responses from PSTs' noticing prompts, and field notes from implementation to examine the effect of single versus multiple perspectives. The team will use similar methods to examine how PSTs use the annotation technology and its effect. The results of the research and the platform will be widely disseminated.

Ed+gineering: An Interdisciplinary Partnership Integrating Engineering into Elementary Teacher Preparation Programs

In this project, over 500 elementary education majors will team with engineering majors to teach engineering design to over 1,600 students from underrepresented groups. These standards-based lessons will emphasize student questioning, constructive student-to-student interactions, and engineering design processes, and they will be tailored to build from students' interests and strengths.

Lead Organization(s): 
Award Number: 
1908743
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

Engineering education, with its emphasis on developing creative solutions to relevant problems, is a promising approach to increasing elementary students' interest in scientific fields. Despite its potential, engineering education is often absent from elementary classes because many teachers feel underprepared to integrate it into their instruction. This project addresses this issue through an innovative approach to undergraduate elementary education programs. In this approach, called Ed+gineering, undergraduate elementary education majors team with undergraduate engineering majors to develop and teach engineering lessons to elementary students in out-of-school settings. In this project, over 500 elementary education majors will team with engineering majors to teach engineering design to over 1,600 students from underrepresented groups. These standards-based lessons will emphasize student questioning, constructive student-to-student interactions, and engineering design processes, and they will be tailored to build from students' interests and strengths. The research team will study whether Ed+gineering is correlated with positive outcomes for the elementary education majors. They will also study whether and how the elementary education majors subsequently provide engineering instruction during their first year of licensed teaching. This project will advance knowledge by resulting in a model for teacher education that has the potential to improve future elementary teachers' confidence and ability to teach engineering. In turn, more elementary students may have opportunities to experience engineering as they discover how innovative applications of science can be used to solve problems in the world around them.

Researchers at Old Dominion University will study whether a teacher preparation model is associated with positive outcomes for pre-service teachers while they are undergraduates and in their first year as professional teachers. Undergraduate elementary education majors and undergraduate engineering majors will work in interdisciplinary teams, comprised of four to six people, in up to three mandatory collegiate courses in their respective disciplinary programs. Each semester, these interdisciplinary teams will develop and teach a culturally responsive, engineering-based lesson with accompanying student materials during a field trip or after-school program attended by underrepresented students in fourth, fifth, or sixth grade. Using a quasi-experimental design with treatment and matched comparison groups, researchers will identify whether the teacher preparation model is associated with increased knowledge of engineering, beliefs about engineering integration, self-efficacy for engineering integration, and intention to integrate engineering, as determined by existing validated instruments as well as by new instruments that will be adapted and validated by the research team. Additionally, the researchers will follow program participants using surveys, interviews, and classroom observations to determine whether and how they provide engineering instruction during their first year as licensed teachers. Constant comparative analyses of these data will indicate barriers and enablers to engineering instruction among beginning teachers who participated in the Ed+gineering program. This project will result in an empirically-based model of teacher preparation, a predictive statistical model of engineering integration, field-tested engineering lesson plans, and validated instruments that will be disseminated widely to stakeholders.

STEM for All Collaboratory: Accelerating Dissemination and Fostering Collaborations for STEM Educational Research and Development

This project will capitalize on the STEM for All Video Showcase and extend its impact by creating a STEM for All Multiplex. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts.

Lead Organization(s): 
Award Number: 
1922641
Funding Period: 
Sun, 09/01/2019 to Wed, 08/31/2022
Full Description: 

The STEM for All Collaboratory will advance educational research and development through the creation and facilitation of two related and interactive platforms: the STEM for All Video Showcase, and the STEM for All Multiplex. The Video Showcase provides an annual, online, week-long, interactive event where hundreds of educational researchers and developers create, share, and discuss 3-minute videos of their federally funded work to improve Science, Mathematics, Engineering, Technology and Computer Science education. Several years of successful Video Showcases have contributed to a rich database of videos showcasing innovative approaches to STEM education. To capitalize on the growing resource and extend its impact, this project will create a STEM for All Multiplex, a unique contribution to STEM education. The Multiplex will draw on past and future Video Showcase videos to create a multimedia environment for professional and public exchange, as well as to provide a way for anyone to search the growing database of videos, create thematic playlists, and re-use the content in new educational and research contexts. The Multiplex will host interactive, monthly, thematic online events related to emerging research and practices to improve STEM and Computer Science education in formal and informal environments. Each thematic event will include selected video presentations, expert panels, resources, interactive discussions and a synthesis of lessons learned. All events will be accessible and open to the public. The project will continue to host and facilitate the annual Video Showcase event which has attracted over 70,000 people from over 180 countries over the course of a year. This effort will be guided by a collaboration with NSF resource centers, learning networks, and STEM professional organizations, and will advance the STEM research and education missions of the 11 collaborating organizations.

The Video Showcase and the Multiplex will foster increased dissemination of federally funded work and will effectively share NSF's investments aimed at improving STEM education. It will enable presenters to learn with and from each other, offering and receiving feedback, critique, and queries that will improve work in progress and to facilitate new collaborations for educational research. It will connect researchers with practitioners, enabling both groups to benefit from each other's knowledge and perspective. Further, it will connect seasoned investigators with aspiring investigators from diverse backgrounds, including those from Minority Serving Institutions. It will thereby enable new researchers to broaden their knowledge of currently funded efforts while also providing them with the opportunity to discuss resources, methodology and impact measures with the investigators. Hence, the project has the potential to broaden the future pool of investigators in STEM educational research. This work will further contribute to the STEM education field through its research on the ways that this multimedia environment can improve currently funded projects, catalyze new efforts and collaborations, build the capacity of emerging diverse leadership, and connect research and practice.

Aligning the Science Teacher Education Pathway: A Networked Improvement Community

This project will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities. The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts.

Award Number: 
1908900
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

California State University will study the activities of a Networked Improvement Community (NIC) as a vehicle to bridge gaps across four identified steps along the science teacher training and development pathways within local contexts of 8 participating universities (NIC sites). Networked Improvement Community (NIC) will co-create a shared vision and co-defined research agenda between university researchers, science educators and school district practitioners working together to reform teacher education across a variety of local contexts. By studying outcomes of shared supports and teacher tools for use in multiple steps along the science teacher education pathway, researchers will map variation existing in the system and align efforts across the science teacher education pathway. This process will integrate an iterative nature of educational change in local contexts impacting enactment of the NGSS in both university teacher preparation programs and in school district professional training activities and classrooms.

The overarching goal of the project is to strengthen the capacity of universities and school districts to reliably produce teachers of science who are knowledgeable about and can effectively enact the Next Generation Science Standards (NGSS), although prepared in varied organizational contexts. The project will accomplish this goal 1) leveraging the use of an established Networked Improvement Community, composed of science education faculty from eight university campuses and by 2) improving and studying coherence in the steps along the science teacher education pathway within and across these universities and school districts. The project will use a mixed methods approach to data collection and analysis. Consistent with Improvement Science Theory, research questions will be co-defined by all stakeholders.

Designing and Researching a Program for Preparing Teachers as Facilitators of Computational Making Activities in Classroom and Informal Learning Environments

This project will study a model of pre-service teacher preparation that is designed to to increase teachers' and students' skills and confidence with computational thinking and develop teachers as designers of inclusive learning environments to promote computational thinking. The project will engage elementary (grades K-5) pre-service teachers (who are concurrently involved in school-based teacher preparation programs) as facilitators in an existing family technology program called Family Creative Learning (FCL).

Project Email: 
Lead Organization(s): 
Award Number: 
1908351
Funding Period: 
Thu, 08/01/2019 to Sat, 07/31/2021
Project Evaluator: 
Full Description: 

This project will study a model of pre-service teacher preparation that is designed to to increase teachers' and students' skills and confidence with computational thinking and develop teachers as designers of inclusive learning environments to promote computational thinking. The project will build teachers' recognition of diverse family learning and cultural resources. The project will engage elementary (grades K-5) pre-service teachers (who are concurrently involved in school-based teacher preparation programs) as facilitators in an existing family technology program called Family Creative Learning (FCL). This program is embedded in the Denver Public Library (DPL) network of makerspaces. The project will study pre-service elementary teachers' computational thinking and facilitation practices and its impact on children's learning across informal and classroom settings where pre-service teachers concurrently conduct their field work. The project team will develop research-based resources, tools, and activities that help to cultivate these key facilitation practices. These practices will include how to develop trust and relationships, to deepen participation and interests, and to ask questions that encourage inquiry. These resources will be useful for teacher preparation and for staff at informal learning organizations with making and tinkering spaces promoting STEM learning, specifically computational thinking. The project will disseminate resources through current relationships with PBS Kids and through networks of educators such as MakerEd, Connected Learning Alliance, and technology education networks.

The project will research: (1) what features of pre-service teachers' experiences preparing for and facilitating the FCL program at DPL supports or limits their development of facilitation practices and computational thinking; (2) study how teachers and participants learn and develop in their joint engagement with computational thinking through making; (3) examine how teachers carry over and influence student's learning in their fieldwork within classroom settings. The project team will use ethnographic methods to develop comparative case studies of pre-service teachers' development and the impact on student learning across formal and informal learning settings. These methods include observation, interviews, and artifact collection to closely document what supports new facilitators to engage in facilitation practices of computational thinking activities and its consequential impact on student and family learning. An external advisory board with relevant expertise will provide iterative feedback and assess the project's progress in meeting its goals. The project results have implications for teaching practices across formal and informal learning spaces that aim to engage diverse participants in interest-driven, peer-supported, and project-based STEM learning experiences.

Alternative video text
Alternative video text: 

CAREER: Cultivating Teachers' Epistemic Empathy to Promote Responsive Teaching

This CAREER award aims to study the construct of "epistemic empathy" and examine how it can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom. In the context of this project, epistemic empathy is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity aimed at the construction, communication, and critique of knowledge.

Lead Organization(s): 
Award Number: 
1844453
Funding Period: 
Mon, 07/01/2019 to Sun, 06/30/2024
Full Description: 

When students perceive that their sense-making resources, including their cultural, linguistic, and everyday experiences, are not relevant to their science and mathematics classrooms, they may view these fields as inaccessible to them. This in turn creates an obstacle to their engagement and active participation which becomes particularly consequential for students from traditionally underrepresented populations. This issue points at the pressing need to prepare science and mathematics teachers to open up their instruction to students’ diverse ideas and meaning-making repertoires. This CAREER award aims to address this need by studying the construct of teachers’ "epistemic empathy” which is defined as the act of understanding and appreciating another's cognitive and emotional experience within an epistemic activity—an activity aimed at the construction, communication, and critique of knowledge. Through epistemic empathy, teachers take learners' perspectives and identify with their sense-making experiences in service of fostering their inquiries. The project’s goals are to examine how epistemic empathy can be cultivated in science and mathematics teacher education, how it functions to promote responsive teaching, and how it shapes learners' engagement in the classroom.

The five research questions will be: (1) Do the ways in which pre-service teachers display epistemic empathy change throughout a course aimed at promoting attention to and knowledge about learners’ varied ways of knowing in science and mathematics?; (2) How do the teaching domain and teaching context influence how teachers express epistemic empathy, and the concerns and tensions they report around empathizing with learners’ thinking and emotions?; (3) How does epistemic empathy shape the ways in which teachers understand and reflect on their roles, goals, and priorities as science or mathematics teachers?; (4) How does epistemic empathy shape teachers’ responsiveness to student thinking and emotions during instruction?; and (5) How does teachers’ epistemic empathy influence how students orient and respond to each other’s thinking in science and mathematics classrooms?

To address these questions, the project will conduct a series of design-based research studies working with science and mathematics pre-service and in-service K-12 teachers (n=140) to design, implement, and analyze ways to elicit and cultivate their epistemic empathy. Further, the project will explore how epistemic empathy shapes teachers’ views of their roles, goals, and priorities as science or mathematics teachers and how it influences their enactment of responsive teaching practices. The project will also examine the influence of teachers’ epistemic empathy on student engagement, in particular in the ways students attend and respond to each other’s epistemic experiences in the classroom. Data collection will include video and audio recording of teacher education and professional development sessions; collection of teachers’ work within those sessions such as their responses to a pre- and post- video assessment task and their written analyses of different videos of student inquiry; interviews with the teachers; and videos from the teachers’ own instruction as well as teachers’ reflections on these videos in stimulated recall interviews. These data will be analyzed using both qualitative methods (i.e., discourse analysis, interaction analysis) and quantitative methods (i.e., blind coding, descriptive statistics). The project’s outcomes will be: (1) an instructional model that targets epistemic empathy as a pedagogical resource for teachers, with exemplars of activities and tasks aimed at developing teachers' attunement to and ways of leveraging learners' meaning-making repertoires (2) local theory of teachers' learning to epistemically empathize with learners in science and mathematics; and (3) empirical descriptions of how epistemic empathy functions to guide and shape teachers' responsiveness and students' engagement. An advisory board will provide feedback on the project’s progress, as well as formative and summative evaluation.

Pages

Subscribe to Preservice Teachers