Hispanics/Latinos

Computer-Supported Math Discourse Among Teachers and Students (Collaborative Research: Powell)

This project will design, develop, and test an online collaborative learning environment where students and teachers solve mathematical problems and communicate their thinking.  This online collaborative learning environment will help increase the quality and quantity of math discourse among mathematics teachers and students.  The researchers will also examine the impact of the online collaborative learning environment on students' significant mathematical discourse and achievement.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1118888
Funding Period: 
Thu, 09/01/2011 to Fri, 08/31/2018
Full Description: 

This full research and development project is to design, develop, and test a cutting-edge learning environment where students and teachers solve mathematical problems and communicate their thinking with others through the virtual environment. The major focus is to increase the quality and quantity of significant math discourse among mathematics teachers and their students by using the virtual learning environment. The researchers will test the usability of the learning environment for engaging students in high quality discourse. The researchers will also examine the impact of the virtual learning environment on student significant mathematical discourse and achievement.

The project uses a design research method as well as summative evaluations to achieve research and development goals. Mixed methods will be used to examine the impact of the virtual learning environment on student significant mathematical discourse and achievement.

The findings of the project contribute to the field in three ways: (1) The virtual learning environment can be both an effective pedagogical tool and a research tool in mathematics education; (2) It will contribute to our understanding about the nature of mathematical discourse online as well as about ways to foster the quality and quantity of significant math discourse among teachers and their students; and (3) This project can provide insights into effective online deliveries of courses.

Multiple Instrumental Case Studies of Inclusive STEM-Focused High Schools: Opportunity Structures for Preparation and Inspiration (OSPrl)

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.

Lead Organization(s): 
Award Number: 
1118851
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. In contrast to highly selective STEM-focused schools that target students who are already identified as gifted and talented in STEM, inclusive STEM-focused high schools aim to develop new sources of STEM talent, particularly among underrepresented minority students, to improve workforce development and prepare STEM professionals. A new NRC report, Successful K-12 STEM Education (2011), identifies areas in which research on STEM-focused schools is most needed. The NRC report points out the importance of providing opportunities for groups that are underrepresented in the sciences, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. This project responds specifically to the call for research in the NRC report and provides systematic data to define and clarify the nature of such schools. 

The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study. The first phase of the study is focusing on 12 well-established and carefully planned schools with good reputations and strong community and business support, in order to capture the critical components as intended and implemented. Case studies of these high-functioning schools and a cross-case analysis using a set of instruments for gauging STEM design and implementation are contributing toward building a theory of action for such schools that can be applied more generally to STEM education. The second phase of the study involves selecting four school models for further study, focusing on student-level experiences and comparing student outcomes against comprehensive schools in the same district. Research questions being studied include: 1) Is there a core set of likely critical components shared by well-established, promising inclusive STEM-focused high schools? Do other components emerge from the study? 2) How are the critical components implemented in each school? 3) What are the contextual affordances and constraints that influence schools' designs, their implementation, and student outcomes? 4) How do student STEM outcomes in these schools compare with school district and state averages? 5) How do four promising such schools compare with matched comprehensive high schools within their respective school districts, and how are the critical components displayed? 6) From the points of view of students underrepresented in STEM fields, how do education experiences at the schools and their matched counterparts compare? And 7) How do student outcomes compare?

The research uses a multiple instrumental case study design in order to describe and compare similar phenomena. Schools as critical cases are being selected through a nomination process by experts, followed by screening and categorization according to key design dimensions. Data sources include school documents and public database information; a survey, followed by telephone interviews that probe for elaborated information, to provide a systematic overview of the candidate components; on-site visitations to each school provide data on classroom observations at the schools; interviews with students, teachers and administrators in focus groups; and discussions with critical members of the school community that provide unique opportunities to learn such as mentors, business leaders, and members of higher education community that provide outside of school learning experiences. The project is also gathering data on a variety of school-level student outcome indicators, and is tracking the likely STEM course trajectories for students, graduation rates, and college admission rates for students in the inclusive STEM-focused schools, as compared to other schools in the same jurisdiction. Analysis of the first phase of the study aims to develop rich descriptions that showcase characteristics of the schools, using axial and open coding, to determine a theory of action that illustrates interconnections among context, design, implementation, and outcome elements. Analysis of the second phase of the study involves similar processes on four levels: school, student, databases, and a synthesis of the three. Evaluation of the project consists of an internal advisory board and an external advisory board, both of which provide primarily formative feedback on research procedures.

Research findings, as well as case studies, records of instrument and rubric development and use, annual reports, and conference proposals and papers are being provided on a website, in order to provide an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. An effort is also being made to give voice to the experiences of high school students from the four pairs of high schools studied in the second phase of the study. Findings are also being disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations.

Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards

This is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices.

Award Number: 
1119163
Funding Period: 
Mon, 08/01/2011 to Tue, 07/31/2012
Full Description: 

The Implementing Mathematical Practices Standards (IMPS) is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices. Researchers at the Education Development Center are developing videos and print materials that exemplify the mathematical practices and are working with teachers in grades 5-10 to help them use the materials effectively. The research questions of the project are focused on what features of the materials are most helpful to teachers and what professional development characteristics facilitate implementation of the mathematics practices in classroom instruction. The external evaluation of the project is being conducted by evaluators at TERC who are looking the process of developing materials and how the materials are used.

The materials will include professionally-produced videos exemplifying a particular mathematical practice being implemented in a classroom as well as printed dialogues that are designed to help teachers understand the practice and why it is critical for students to acquire that mathematical practice. The exemplars of mathematical practices are being developed based on pilot work and systematic advice from mathematicians, mathematics educators and mathematics teachers in grades 5-10. The design process is iterative and materials are refined based on feedback that is received. Facilitators are being prepared to conduct professional development and materials are being tested by more than 150 teachers in a variety of school districts.

Professional groups such as NCTM and NCSM have called for materials that exemplify the CCSS mathematical practices. They have argued that teachers need to understand how these standards can be achieved in classrooms. IMPS systematic effort to design materials that exemplify the standards and to test not only the materials but also the professional development associated with the materials is responding to the national need. The videos and dialogues will be available through broad dissemination.

Cultivating Hispanics and African Americans Reading, Math, Science (CHARMS) in Elementary Schools for Girls Conference

This project is analyzing and sharing baseline data on the achievement of African American and Hispanic girls on national and state assessments. The objectives of the project are to: (1) conduct a critical analysis of achievement data for African American and Hispanic female students; (2) organize a conference featuring presentation of the data analysis and a national speaker; (3) provide STEM career information and materials; and (4) share results of the achievement data analysis.

Lead Organization(s): 
Award Number: 
1048544
Funding Period: 
Wed, 09/01/2010 to Wed, 08/31/2011
Full Description: 

Led by STEM educators at Texas A&M University, this project is analyzing and sharing baseline data on the achievement of African American and Hispanic girls on national and state assessments. The objectives of the project are: (1) To conduct a critical analysis of National Assessment of Educational Progress (NAEP) and Texas Assessment of Knowledge and Skills (TAKS) achievement data for African American and Hispanic female students in grades 3-6 with a focus on sub-test objectives for science, mathematics, and reading over the years 2000-2010; (2) To organize a one-day conference for 100 teachers, administrators and parents from urban, rural and suburban school districts featuring presentation of the data analysis and a national speaker who will share information and lead discussion on why African American and Hispanic girls at the elementary level should begin to think about seeking STEM careers and the required expected academic preparations; (3) To provide conference participants with STEM career information and materials; and (4) To share results of the achievement data analysis at international/national conferences (National Council for Teachers of Mathematics, National Science Teachers Association, American Educational Research Association) and submit papers for publication in scholarly journals.

Quantitative and qualitative methodology will be used to respond to three research questions: (1) What are the differences in the academic achievement of African American and Hispanic girls in grades 3-6 on the National Assessment of Educational Progress (NAEP) and Texas Assessment of Knowledge and Skills (TAKS) during the years 2000-2010? (2) What are the voices of African American and Hispanic 6th grade girls about their TAKS test from third grade to sixth grade? (3) What is the impact of a one-day conference on raising the awareness level of educators and parents about academic achievement among African American and Hispanic girls on national and state assessment in grades 3-6 in reading, mathematics, and science? To address question number one, the study will determine if statistically significant differences exist among the variables of race, class, and gender by grades and subject on student performance on the NAEP and TAKS tests and sub-tests in the areas of reading, mathematics and science. To address question number two, a qualitative analysis will be conducted. Students will be interviewed and data will be transcribed, sorted, and categorized into themes. Member checks and triangulation of data will be used to establish validity and reliability of the findings. To address question number three, descriptive statistics will be used to analyze a Likert-type survey instrument that will be developed by the project PI and CoPIs to assess conference objectives. In addition, a purposive sample of participants (teachers and parents) will be interviewed about their participation in the conference and their responses analyzed using qualitative analysis.

With a focus on African American and Hispanic girls' academic achievement, the project will provide educators, parents and students through a conference venue and other outlets with valuable information to understand their competency in subjects that can impact their decisions to seek STEM careers.

Interactive Science and Technology Instruction for English Learners (RAPID)

This project examines the first-year implementation of a program that will provide low-cost netbook computers and specialized software to fifth and sixth grade students in four schools in Southern California. The PIs collect baseline and early implementation data to determine effects of the intervention on students' academic achievement in science, academic writing in science, and interest in further STEM study.

Project Email: 
Award Number: 
1053767
Funding Period: 
Fri, 10/01/2010 to Fri, 09/30/2011
Full Description: 

This is a RAPID award to investigators at the University of California, Irvine, to examine the first-year implementation of a program that will provide low-cost netbook computers and specialized software to fifth and sixth grade students in four schools in Southern California. The PIs collect baseline and early implementation data to determine effects if the intervention on students' academic achievement in science, academic writing in science, and interest in further STEM study. They also examine the extent to which participation in the program improves student access to, use of, and self-perceived proficiency with technology and how these attributes are mediated by socioeconomic status, ethnicity, and English learner status. Additionally, they examine the effect of the program on teachers' knowledge of and use of technology for instruction.

Four schools from the same school district with similar demographics serve as comparison schools in the study. Additionally, all fifth and sixth grade teachers participate in the study with four program teachers (two at fifth grade and two at sixth grade) participating more extensively as focus teachers. Both qualitative and quantitative methods are used to examine the effects of the program. 

The products include analysis of extensive data on implementation, learning and attitudes. A total of 531 students are involved in the study as well as their teachers. The findings are likely to guide subsequent implementation and research on full implementation within the targeted schools.

CAREER: Supporting Middle School Students' Construction of Evidence-Based Arguments

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. In this CAREER project, I investigate how argumentation ability can be enhanced among middle school students. The project entails theoretical work, instructional design, and empirical work, and involves 3 middle schools in northern Utah and southern Idaho.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0953046
Funding Period: 
Sun, 08/15/2010 to Fri, 07/31/2015
Project Evaluator: 
David Williams
Full Description: 

Doing science requires that students learn to create evidence-based arguments (EBAs), defined as claims connected to supporting evidence via premises. The question chosen for study by a new researcher at Utah State University is: How can argumentation ability be enhanced among middle school students? This study involves 325 middle school students in 12 class sections from 3 school districts in Utah and Idaho. First, students in middle school science classrooms will be introduced to problem-based learning (PBL) units that allow them to investigate ill-structured science problems. These activities provide students with something about which to argue: something that they have explored personally and with which they have grappled. Next, they will construct arguments using a powerful computer technology, the Connection Log, developed by the PI. The Connection Log provides a scaffold for building arguments, allowing each student to write about his/her reasoning and compare it to arguments built by peers. The study investigates how the Connection Log improves the quality of students' arguments. It also explores whether students are able to transfer what they have learned to new situations that call for argumentation.

This study is set in 6th and 7th grade science classrooms with students of diverse SES, ethnicity, and achievement levels. The Connection Log software supports middle school students with written prompts on a computer screen that take students through the construction of an argument. The system allows students to share their arguments with other members of their PBL group. The first generation version of the Connection Log asks students to:

1. define the problem, or state the problem in their own words

2. determine needed information, or decide on evidence they need to find to solve the problem

3. find and organize needed information

4. develop a claim, or make an assertion stating a possible problem solution

5. link evidence to claim, linking specific, relevant data to assertions

The model will be optimized through a process of design-based research. The study uses a mixed methods research design employing argument evaluation tests, video, interviews, database information, debate ratings, and a mental models measure, to evaluate student progress.

This study is important because research has shown that students do not automatically come to school prepared to create evidence-based arguments. Middle school students face three major challenges in argumentation: adequately representing the central problem of the unit; determining and obtaining the most relevant evidence; and synthesizing gathered information to construct a sound argument. Argumentation ability is crucial to STEM performance and to access to STEM careers. Without the ability to formulate arguments based upon evidence, middle school students are likely to be left out of the STEM pipeline, avoid STEM careers, and have less ability to critically evaluate and understand scientific findings as citizens. By testing and refining the Connection Log, the project has the potential for scaling up for use in science classrooms (and beyond) throughout the United States.

CAREER: Teaching and Learning Social Science Inquiry and Spatial Reasoning with GIS

This research project aims to explore and understand how geographic information systems (GIS) can be used to promote and teach spatial thinking and social science inquiry skills. It addresses the research question: What are effective teaching practices using GIS to teach spatial thinking and social science inquiry in middle-school and undergraduate classrooms? This program will study the effectiveness of teaching practices for social science instruction with GIS in urban public schools for specific learning objectives.

Partner Organization(s): 
Award Number: 
0953448
Funding Period: 
Thu, 04/01/2010 to Thu, 03/31/2011
Full Description: 

This research project aims to explore and understand how geographic information systems (GIS) can be used to promote and teach spatial thinking and social science inquiry skills. It addresses the research question: What are effective teaching practices using GIS to teach spatial thinking and social science inquiry in middle-school and undergraduate classrooms? This program will study the effectiveness of teaching practices for social science instruction with GIS in urban public schools for specific learning objectives.

The research plans to develop an empirically-grounded framework for studying the ways teaching practices with GIS interact with four other foci of research: (1) learning objectives for inquiry skills and spatial reasoning, articulated across grade levels; (2) learning processes with GIS; (3) GIS curriculum designs; and (4) the design of GIS tools for learning environments. The project plans to use the GIS tools within a culturally relevant curriculum unit for diverse students of African American and Latino backgrounds.

A range of research methods will be used to study teaching and learning, focused on a common topic: American Migrations of African American and Latino populations over time, using GIS-mapped census data. Research will be conducted in three phases: (1) design experiments iteratively developing a theoretical framework, curriculum, and instructional strategies; (2) case studies of effective instruction at two levels; and (3) curriculum evaluations. Findings on effective teaching and learning in middle school classrooms, with undergraduate college students, and pre-service elementary teachers via GIS based-curriculum, will be presented.

Astrobiology in the Secondary Classroom Project: An Interdisciplinary Curriculum Developed by a Collaboration of Scientists and Educators from Three Different Minority Communities

This project is designed to enhance an existing interdisciplinary high school science curriculum—Astrobiology in the Secondary Classroom (ASC)—in an innovative way and conduct research to determine the effectiveness of these materials in three different underrepresented student populations—African Americans, Hispanics, and Native Americas—experiencing an achievement gap in STEM areas at five sites. Improvements will focus on program alignment and increased use of data sets made available by research scientists.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733188
Funding Period: 
Sat, 09/01/2007 to Tue, 08/31/2010
Project Evaluator: 
Dragonfly Enterprises
Full Description: 

Introduction
     The intent of the Astrobiology in Secondary Classrooms project is to establish a successful model for creating the scientists of tomorrow by bringing powerful technology tools and current scientific data into an interdisciplinary curriculum focused on reaching all students. Goals for students participating in the ASC curriculum in their classrooms include:

- An understanding of the research pursuits and findings of key astrobiology researchers

- An appreciation for scientific research and the current knowledge base available in astrobiology

- A high degree of scientific and technological literacy

- A desire to continue their studies in STEM areas, particularly in areas pertaining to astrobiology  

The ASC curriculum tackles many of the current problems in science education by addressing curriculum issues as well as minimizing classroom limitations that affect science instruction, particularly in classrooms containing high numbers of students underrepresented in science careers. Many science curricula, including textbooks, lack connections among different academic disciplines and do not provide students with a coherent framework for both science literacy and content knowledge. The ASC modules are being developed using research-based teaching strategies designed to diminish achievement gaps and increase the participation of underrepresented groups in science, technology, engineering, and mathematics (STEM).
    The ASC project began in 2003 with a team of university faculty from minority serving institutions and teachers selected by members of the Minority Institution Astrobiology Collaborative (MIAC). Working with scientists at the Goddard Center for Astrobiology, the team developed the ASC curriculum framework. Now, through this network of minority-serving institutions, the ASC staff seeks to enable middle and high school teachers across the United States to include astrobiology-related activities in their classrooms. Major partners during the field-testing phase of the materials are sites designated as NASA Science, Engineering, Mathematics and Aerospace Academies (SEMAA). Partnerships with SEMAA programs and other minority serving locations allow for a focus on diversity when field-testing and developing the ASC curriculum in both formal and informal educational settings. There were field-testing sites in eight different locations where more than 80 percent of the students are members of the Native American, African American, or Hispanic American communities.

Theoretical Framework and Influences
      Research supports the use of astrobiology as a framework for increasing science literacy (Astrobiology Design Project Team, 2002; Carrapiço, et al. 2001; Rodrigues & Carrapiço, 2005; Slater, 2006; Staley, 2003; Tang, 2005) because of its interdisciplinary nature. Furthermore, partnerships between curriculum developers, teachers, professional scientists and NASA researchers will provide the “real-world” contexts that are recognized as a vital part of science literacy and increasing student interest and understanding of STEM areas.
    The pedagogical side of the ASC curriculum has been grounded in three evidenced-based practices shown to increase achievement among all students and specifically among ethnically diverse students:
The Five Standards for Effective Pedagogy developed by the Center for Research on Education Diversity and Excellence (CREDE) provide a framework for culturally relevant instruction (Tharp, et al., 2003).  The ASC Curriculum incorporates these principles in each of the modules in recognition of the importance of cultural awareness and the dynamics of learning in diverse settings (Lee & Luykx, 2006; Aikenhead, 2001; Lynch, et al., 2005).
The ASC Curriculum includes differentiated instruction that provides teachers with strategies for scaffolding that is a necessary part of effective teaching with varying levels of prior knowledge and understanding.
In their work with the NSF funded VISIT Teacher Enhancement Project, Hunter and Xie detailed the barriers for teachers accessing and using the vast amounts of data on the Internet (Hunter & Xie, 2001). The ASC project worked to partner curriculum developers and teachers with astrobiology researchers to develop scientific data sets that are user-friendly in the high school classroom as well as provide much needed materials and laboratory supplies in order to overcome these barriers.

Program Evaluation
    Evaluation of the ASC curriculum includes web-based collaborations among teachers, scientists and curriculum developers to enhance the modules. Research data is currently being collected and analyzed as part of a three year pilot study funded by the National Science Foundation. The activities and resulting research is looking at a broad spectrum of variables including change in confidence levels of teachers in the use of research-based instructional strategies, their comfort level in new science content knowledge, and teacher perceptions of change in student academic behavior along with science achievement. In addition to teacher self-report surveys and interviews the project staff gathered student survey data on science interest and performance scores on end of module assessment questions. The intent of evaluating these areas through both teacher and students data is to measure the impact of the ASC curriculum on diverse groups of students using a variety of assessment instruments and work samples. The project staff uses this formative evaluation information to revise the ASC curriculum.
        A variety of instruments are used to gather data  on the ASC curriculum. Initial findings during year one and two of the grant were designed to determine the success of the ASC materials in meeting the goals of the grant. There are two main types of instruments employed: instruments geared towards teachers and instruments geared towards students. Teacher instruments included surveys completed on paper and mailed in, surveys deployed online, teacher lesson plan feedback, and teacher interviews.
      In addition to formal assessments of student content knowledge and interest in areas of science, analysis of work samples of students have been valuable in assessing changes in student and teacher thinking through the course of the three years of this pilot-testing project.  Data about the community of learners were also obtained through analysis of electronic communication and collaboration with the teachers, students and scientists.
  
 Summary of Research Efforts
    The final phase of data gathering and analysis is currently underway, with data obtained from teachers and students at each of 4 sites. Student data gathered consists of student work samples, attitude/interest surveys, and practice questions from the ACT test of Science Reasoning. Data gathered from teachers consists of curriculum maps combining state standards and ASC curriculum activities/assessments, teacher retrospective surveys of confidence and impact, self-report classroom observation forms, and written feedback on individual ASC lessons. These sources of data will be combined to produce a final ASC curriculum product suitable for NASA review (in order to become an official NASA curriculum product) and research on the effectiveness and impact of this curriculum upon diverse groups of students.

Preliminary Results from Teachers:
Teacher self report data indicate that the ASC curriculum has a coherent framework that is aligned with research-based pedagogy for diverse students (qualitative data from structured interviews).
Teachers reported that the ASC Curriculum had a major impact on student interest and performance
The ASC curriculum contains activities and professional development opportunities that allow teachers to educate diverse groups of students. Teachers had a high degree of satisfaction with the professional development giving the ASC training a perfect rating of 4.0/4.0 on the end of session surveys.
Feedback from teachers suggests that they were able to teach the ASC curriculum to their students and in so doing gained confidence in scientific knowledge and the use of instruments

Research Questions: Student Impacts
- Did the ASC curriculum supported student understanding of core STEM content and basic STEM concepts in formal educational settings (high school classrooms) as well as in informal educational settings after school as measured by educator feedback?

- Does the ASC curriculum increased science literacy in diverse groups of students as measured by scores on a practice version of the ACT test of Science Reasoning?

-Does the ASC curriculum provide unique questions that increased student interest in STEM areas as measured by student interest surveys?

For more information about the ASC Curriculum development program visit the website: http://www.astroclassroom.org

Summary
    The ASC modules will provide a web-based interdisciplinary curriculum in astrobiology that is free and easily accessible by the public. The curriculum is designed to supplement existing state curricula by providing a framework that draws all areas of science together through engaging activities, providing teachers with activities that meet both state and national standards along with encouraging science literacy. Accomplishing this goal will involve modification of modules based on feedback from teachers during professional development and implementation with students in formal and informal educational settings. Research during the field-testing phase of the project is currently assessing the impact of these crosscutting activities on student performance and attitudes about science along with student interest in STEM careers.

Math Pathways and Pitfalls: Capturing What Works for Anytime Anyplace Professional Development

Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.

Lead Organization(s): 
Award Number: 
0918834
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Full Description: 

Researchers and developers at WestEd are developing, field-testing, and evaluating ten online professional development modules anchored in research-based teaching principles and achievement-boosting mathematics materials. The modules provide interactive learning opportunities featuring real classroom video demonstrations, simulations, and scaffolded implementation. The professional development module development builds on the Math Pathways and Pitfalls instructional modules for elementary and middle school students developed with NSF support. The professional development provided through the use of these modules is web-based (rather than face-to-face), is provided in chunks during the school year and immediately applied in the classroom (rather than summer professional development and school year application), and explicitly models ways to apply key teaching principles to regular mathematics lessons (rather than expecting teachers to extract and apply principles spontaneously).

The project studies the impact of the modules on teaching practice with an experimental design that involves 20 treatment teachers and 20 control teachers. Data are gathered from teacher questionnaires, classroom observations, and post-observation interviews.

CLUSTER: Investigating a New Model Partnership for Teacher Preparation (Collaborative Research: Steinberg)

This project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. The study is designed to examine and document the effect of this integrated program on the production of urban science teachers. This study will also research the impact of internships in science centers on improving classroom science teaching in urban high schools.

Award Number: 
0554269
Funding Period: 
Sat, 04/01/2006 to Thu, 03/31/2011
Full Description: 

            CLUSTER (Collaboration for Leadership in Urban Science Teaching, Evaluation and Research) is an NSF-funded TPC project. Its partners are The City College of New York (CCNY), New York Hall of Science (NYHS), and City University of New York’s Center for Advanced Study in Education (CASE). It aims to develop and research a model designed to increase and improve the pool of secondary science teachers who reflect the ethnic distribution of city students and who are prepared to implement inquiry-based science instruction.

            CLUSTER Fellows are undergraduate science majors in New York City. They are recruited, trained, and certified to teach science in New York City middle and high schools. They participate both as students in the CCNY Teacher Education Program and as Explainers in the NYHS Science Career Ladder. Their experiences in class and at the NYHS are integrated and guided by a conceptual framework, which emphasizes science as an active process of discovery where ideas are developed and constructed through meaningful experience.

            CLUSTER aims to produce generalizable knowledge of interest to the field regarding the growth and development of perspective teachers in an experiential training program and to assess the impact and value of the CLUSTER model.

Pages

Subscribe to Hispanics/Latinos