American Indians/Alaska Natives

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat in Science

This project investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

Award Number: 
1313713
Funding Period: 
Sun, 09/15/2013 to Wed, 08/31/2016
Full Description: 

Inquiry Primed: An Intervention to Mitigate the Effects of Stereotype Threat is an Exploratory Project in the Teacher Strand of DRK-12 that investigates stereotype threat at the classroom level and in the context of inquiry-based instruction, in order to develop strategies and a related professional development course, using the principles of Universal Design for Learning, to help teachers learn how to mitigate stereotype threat.

The project includes three major activities:

1) An experimental study testing the hypothesis that the influences of stereotype threat on individual students affects instructional processes for the class as a whole: Research participants include three teachers from 3 different school districts in Massachusetts, each with four 8th grade science classes, for a total sample of 12 science classes and approximately 300 students. The two treatment conditions (stereotype threat induced vs. not induced) are applied blindly to three classroom groups over a series of six lessons. The project uses existing surveys for gathering data, including "Communicative Interactions", RTOP subscales, subscales of the Constructivist Learning Environment Survey (CLES), and a brief student questionnaire measuring domain salience (e.g., self ranking of degree of participation in class). The analysis is conducted using Ordinary Least Squares (OLS) regression, with predictions of classroom instructional processes based on treatment condition, percentage of students in stereotyped group, and domain salience.

2) Collaboration with teachers as co-researchers to translate research findings into classroom practices and a prototype online professional development course: Three middle school teachers who participated in Study 1 serve as co-researchers, using the Universal Design for Learning model. The product is a prototype, online professional development modules that include self-paced presentations, small group facilitated discussions, asynchronous discussions, and live webcasts with experts, all focused on how teachers can implement strategies to mitigate stereotype threat in their practice. The design elements will be assessed in terms of clarity, accessibility, use, value, and promise.

3) Pilot testing of three professional development modules: The professional development component (via communities of practice) supports classroom teachers as they incorporate these strategies into their daily activities. The three teachers involved in the original study and design of modules participate in a six-week pilot study of the online professional development course, anticipated to consist of three modules, with teachers participating 3-4 hours per week. The course is evaluated through observations of professional development interactions (synchronous and asynchronous), interviews, implementation strategies, Moodle Electronic Usage Logs, online discussions, and a questionnaire. Descriptive statistics and regression analysis are used to seek predictors of use and contributions by teacher characteristics.

The project contributes critical knowledge about stereotype threat, a construct shown to contribute to disparities in achievement in STEM education. The outcomes of the project will include research findings that are to be submitted to science education research journals for publication; a prototype, online teacher professional development course on mitigating stereotype threat in STEM education classrooms; and dissemination of the course to teachers who are part of the CAST and Minority Student Achievement Networks.

Learning Algebra and Methods for Proving (LAMP)

This project tests and refines a hypothetical learning trajectory and corresponding assessments, based on the collective work of 50 years of research in mathematics education and psychology, for improving students' ability to reason, prove, and argue mathematically in the context of algebra. The study produces an evidence-based learning trajectory and appropriate instruments for assessing it.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1317034
Funding Period: 
Tue, 10/01/2013 to Wed, 09/30/2015
Full Description: 

The Learning Algebra and Methods for Proving (LAMP) project tests and refines a hypothetical learning trajectory and corresponding assessments, based on the collective work of 50 years of research in mathematics education and psychology, for improving students' ability to reason, prove, and argue mathematically in the context of algebra. The goals of LAMP are: 1) to produce a set of evidence-based curriculum materials for improving student learning of reasoning, proving, and argumentation in eighth-grade classrooms where algebra is taught; 2) to produce empirical evidence that forms the basis for scaling the project to a full research and development project; and 3) to refine a set of instruments and data collection methods to support a full research and development project. LAMP combines qualitative and quantitative methods to refine and test a hypothetical learning trajectory for learning methods of reasoning, argumentation, and proof in the context of eighth-grade algebra curricula. Using qualitative methods and quantitative methods, the project conducts a pilot study that can be scaled up in future studies. The study produces an evidence-based learning trajectory and appropriate instruments for assessing it.

Over the past two decades, national organizations have called for more attention to the topics of proof, proving, and argumentation at all grade levels. However, the teaching of reasoning and proving remains sparse in classrooms at all levels. LAMP will address this critical need in STEM education by demonstrating ways to improve students' reasoning and argumentation skills to meet the demands of college and career readiness.

This project promises to have broad impacts on future curricula in the United States by creating a detailed description of how to facilitate reasoning and argumentation learning in actual eighth-grade classrooms. At present, a comprehensive understanding of how reasoning and proving skills develop alongside algebraic thinking does not exist. Traditional, entirely formal approaches such as two-column proof have not demonstrated effectiveness in learning about proof and proving, nor in improving other mathematical practices such as problem-solving skills and sense making. While several studies, including studies in the psychology literature, lay the foundation for developing particular understandings, knowledge, and skills needed for writing viable arguments and critiquing the arguments of others, a coherent and complete set of materials that brings all of these foundations together does not exist. The project will test the hypothetical learning trajectory with classrooms with high proportions of Native American students.

Undergraduate Biology Education Research Program

The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

Award Number: 
1262715
Funding Period: 
Sun, 09/01/2013 to Wed, 08/31/2016
Full Description: 

The Undergraduate Biology Education Research (UBER) REU Site engages undergraduates in studying important issues specific to the teaching and learning of biology, with mentorship from faculty in the Division of Biological Sciences and the Mathematics and Science Education Department at the University of Georgia. The goals of this nine-week summer program are to develop undergraduates' knowledge and skills in biology education research, encourage undergraduates to pursue doctoral study of biology teaching and learning, expand the diversity of the talent pool in biology education research by strategically recruiting and mentoring underrepresented and disadvantaged students, strengthen and expand collaborations among faculty and students in education and life sciences, and contribute to the development of theory and knowledge about biology education in ways that can inform undergraduate biology instruction.

A programmatic effort to introduce undergraduates to the discipline of biology education research is unprecedented nationwide. Biology education research as a discipline is quite young, and systematic involvement of undergraduates has not been part of the culture or practice in biology or education. UBER aims to promote cultural change that expands the involvement of undergraduates in biology education research and raises awareness among undergraduates that biology teaching and learning are compelling foci for study that can be pursued at the graduate level and via various career paths. UBER utilizes a combined strategy of broad and strategic recruiting to attract underrepresented minority students as well as students who do not have access to biology education research opportunities at their own institutions. Evaluation plans involve tracking UBER participants over time to understand the trajectories of students who complete undergraduate training in biology education research.

Significant co-funding of this project is provided by the Division of Biological Infrastructure in the NSF Directorate for Biological Sciences in recognition of the importance of educational research in the discipline of biology. The Division of Undergraduate Education and the Division of Research on Learning in Formal and Informal Settings also provides co-funding.

SimScientists Assessments: Physical Science Links

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The evaluation plan addresses both formative and summative aspects.

Lead Organization(s): 
Award Number: 
1221614
Funding Period: 
Mon, 10/01/2012 to Fri, 09/30/2016
Full Description: 

The goal of this project is to develop and validate a middle school physical science assessment strand composed of four suites of simulation-based assessments for integrating into balanced (use of multiple measures), large-scale accountability science testing systems. It builds on the design templates, technical infrastructure, and evidence of the technical quality, feasibility, and instructional utility of the NSF-funded Calipers II project. The assessment strand consists of multilevel (increased thinking levels) assessment designs grounded on evidence-centered principles that target practices and key disciplinary conceptual schemes, such as matter, motion, energy, and waves identified in the National Research Council report "A Framework for K-12 Science Education: Practices, Crosscutting Knowledge, and Core Ideas". The assessment model vertically links simulations (interactive with feedback to students, coaching, and reflection); curriculum-embedded assessments for formative use; unit benchmark assessment for interim summative purposes; and a set of "signature tasks" (short-term simulations on recurring problem types). Members of the Advisory Board and an Assessment Review Panel actively participate in the development and implementation of this effort. Heller Research Associates is the external evaluator. The evaluation plan addresses both formative and summative aspects.

The project's theory of action is based on model-based learning and evidence-centered design reflective of the notion that the construct of science is multidimensional, requiring (a) understanding how the components of a science conceptual system interact to produce behaviors of the system; and (b) the use of inquiry practices to investigate the dynamic behaviors and underlying components' interactions of the system. A total of eight research and development questions guide the scope of work. The questions focus on: (a) validity (substantive and technical quality) of the individual simulation assessments; and (b) classroom implementation (feasibility, fidelity, utility). The methodology for test construction and revision follows the testing standards of major professional organizations (i.e., American Educational Research Association, American Psychological Association, and National Council of Measurement in Education) through three development phases. Phase I (Assessment Development) focuses on the alignment, quality, and prototype testing, including leverage and modification of prior work, and design of new assessment suites and signature tasks. Phase II (Pilot and Validation Studies) deals with the testing of all assessments, research instruments, and study methods. Phase III (Cross-Validation Studies) substantiates the multilevel integration assessment model, cross-validates the assessments piloted in Phase II, and establishes a reliable argument that the assessments measure the intended content and inquiry practices suitable for use in district and state-level assessment systems.

Expected outcomes are: (1) a research-informed and field-tested physical science simulations-based assessment model with high potential for extended use in middle school grades; and (2) a policy brief that provides recommendations for integrating assessments into districts and state large-scale, multi-level, balanced science assessments.

Designing an Integrated Framework for Genetics Education to Develop Innovative Curricula and Assessments

This project is developing a model for integrating best practices in technology-supported instructional design and formative assessment for genetics instruction in upper elementary, middle and high school. Using the Web-based Inquiry Science Environment platform, the project is developing school curriculum that scaffold and model scientific practices, enable students to interface with real-world problems, provide opportunities for students to make connections between visible phenomena and underlying genetic processes, and promote student monitoring and reflection on learning.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
1119055
Funding Period: 
Mon, 08/15/2011 to Tue, 07/31/2012
Full Description: 

Michigan State University is developing a model for integrating best practices in technology-supported instructional design and formative assessment for genetics instruction in upper elementary, middle and high school. The project partners with an urban school district in Texas and a suburban school district in Michigan. The objectives are: (1) to articulate a detailed standards- and research-base conceptual framework for describing students' conceptions of genetics and how students develop a full understanding of genetics across grade spans (upper elementary, middle and high school); (2) to develop innovative instructional materials and embedded assessments that provide richer information about students' conceptual understanding of genetics and help practitioners make decisions about what to do next in instruction; and (3) to examine the implementation of these instructional materials and assessments to investigate students' understanding of genetics concepts.

Using the Web-based Inquiry Science Environment (WISE) 4.0 platform (a technology-rich learning environment), the project is developing a 5-week elementary, middle, and secondary school curriculum models that scaffold and model scientific practices, enable students to interface with real-world problems, provide opportunities for students to make connections between visible phenomena and underlying genetic processes, and promote student monitoring and reflection on their learning. Each module will include animation- and stimulation-based contexts in WISE to provide rich occasions to press for building and developing reasoning and explanations. To promote teachers' use of student responses in formative ways, the materials will offer clear guidance about how to make evidence-based instructional decisions as well as provide options for contingent instruction activities that can be used to address persistent or common non-normative ways of reasoning.

The research offers generalizable approaches on the principled design of embedded assessments in WISE 4.0 and on using these assessments formatively. A quasi-experimental study employing a cross-sectional and longitudinal comparison design will investigate the development of students' understanding of genetics-related ideas from upper elementary to the high school years.

Multiple Instrumental Case Studies of Inclusive STEM-Focused High Schools: Opportunity Structures for Preparation and Inspiration (OSPrl)

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study.

Lead Organization(s): 
Award Number: 
1118851
Funding Period: 
Thu, 09/01/2011 to Mon, 08/31/2015
Full Description: 

The aim of this project is to examine opportunity structures provided to students by inclusive STEM-focused high schools, with an emphasis on studying schools that serve students from underrepresented groups. In contrast to highly selective STEM-focused schools that target students who are already identified as gifted and talented in STEM, inclusive STEM-focused high schools aim to develop new sources of STEM talent, particularly among underrepresented minority students, to improve workforce development and prepare STEM professionals. A new NRC report, Successful K-12 STEM Education (2011), identifies areas in which research on STEM-focused schools is most needed. The NRC report points out the importance of providing opportunities for groups that are underrepresented in the sciences, especially Blacks, Hispanics, and low-income students who disproportionately fall out of the high-achieving group in K-12 education. This project responds specifically to the call for research in the NRC report and provides systematic data to define and clarify the nature of such schools. 

The project is studying inclusive STEM-focused high schools across the United States to determine what defines them. The research team initially identified ten candidate critical components that define STEM-focused high schools and is refining and further clarifying the critical components through the research study. The first phase of the study is focusing on 12 well-established and carefully planned schools with good reputations and strong community and business support, in order to capture the critical components as intended and implemented. Case studies of these high-functioning schools and a cross-case analysis using a set of instruments for gauging STEM design and implementation are contributing toward building a theory of action for such schools that can be applied more generally to STEM education. The second phase of the study involves selecting four school models for further study, focusing on student-level experiences and comparing student outcomes against comprehensive schools in the same district. Research questions being studied include: 1) Is there a core set of likely critical components shared by well-established, promising inclusive STEM-focused high schools? Do other components emerge from the study? 2) How are the critical components implemented in each school? 3) What are the contextual affordances and constraints that influence schools' designs, their implementation, and student outcomes? 4) How do student STEM outcomes in these schools compare with school district and state averages? 5) How do four promising such schools compare with matched comprehensive high schools within their respective school districts, and how are the critical components displayed? 6) From the points of view of students underrepresented in STEM fields, how do education experiences at the schools and their matched counterparts compare? And 7) How do student outcomes compare?

The research uses a multiple instrumental case study design in order to describe and compare similar phenomena. Schools as critical cases are being selected through a nomination process by experts, followed by screening and categorization according to key design dimensions. Data sources include school documents and public database information; a survey, followed by telephone interviews that probe for elaborated information, to provide a systematic overview of the candidate components; on-site visitations to each school provide data on classroom observations at the schools; interviews with students, teachers and administrators in focus groups; and discussions with critical members of the school community that provide unique opportunities to learn such as mentors, business leaders, and members of higher education community that provide outside of school learning experiences. The project is also gathering data on a variety of school-level student outcome indicators, and is tracking the likely STEM course trajectories for students, graduation rates, and college admission rates for students in the inclusive STEM-focused schools, as compared to other schools in the same jurisdiction. Analysis of the first phase of the study aims to develop rich descriptions that showcase characteristics of the schools, using axial and open coding, to determine a theory of action that illustrates interconnections among context, design, implementation, and outcome elements. Analysis of the second phase of the study involves similar processes on four levels: school, student, databases, and a synthesis of the three. Evaluation of the project consists of an internal advisory board and an external advisory board, both of which provide primarily formative feedback on research procedures.

Research findings, as well as case studies, records of instrument and rubric development and use, annual reports, and conference proposals and papers are being provided on a website, in order to provide an immediate and ongoing resource for education leaders, researchers and policymakers to learn about research on these schools and particular models. An effort is also being made to give voice to the experiences of high school students from the four pairs of high schools studied in the second phase of the study. Findings are also being disseminated by more traditional means, such as papers in peer-reviewed journals and conference presentations.

Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards

This is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices.

Award Number: 
1119163
Funding Period: 
Mon, 08/01/2011 to Tue, 07/31/2012
Full Description: 

The Implementing Mathematical Practices Standards (IMPS) is a four-year project that is producing materials designed to help teachers see how the mathematical practices described in the Common Core State Standards for mathematics can be implemented in mathematics instruction. The goal of the improved instruction is to help students adopt and value these critical mathematical practices. Researchers at the Education Development Center are developing videos and print materials that exemplify the mathematical practices and are working with teachers in grades 5-10 to help them use the materials effectively. The research questions of the project are focused on what features of the materials are most helpful to teachers and what professional development characteristics facilitate implementation of the mathematics practices in classroom instruction. The external evaluation of the project is being conducted by evaluators at TERC who are looking the process of developing materials and how the materials are used.

The materials will include professionally-produced videos exemplifying a particular mathematical practice being implemented in a classroom as well as printed dialogues that are designed to help teachers understand the practice and why it is critical for students to acquire that mathematical practice. The exemplars of mathematical practices are being developed based on pilot work and systematic advice from mathematicians, mathematics educators and mathematics teachers in grades 5-10. The design process is iterative and materials are refined based on feedback that is received. Facilitators are being prepared to conduct professional development and materials are being tested by more than 150 teachers in a variety of school districts.

Professional groups such as NCTM and NCSM have called for materials that exemplify the CCSS mathematical practices. They have argued that teachers need to understand how these standards can be achieved in classrooms. IMPS systematic effort to design materials that exemplify the standards and to test not only the materials but also the professional development associated with the materials is responding to the national need. The videos and dialogues will be available through broad dissemination.

Investigating the Relationship Between Teacher-Level and Student-Level Factors and NAEP Mathematics Test Performance by American Indian and Alaska Native Students

This study examines ways that teacher-level factors (including teacher background variables and instructional practices) and student-level factors (such as self-rated mathematics interest and proficiency), and interactions among these factors, are associated with American Indian/Alaska native (AI/AN) student academic achievement in middle grades mathematics. The ultimate goal is to identify malleable factors that, if changed, could improve teachers' practices and AI/AN student achievement in mathematics.

Award Number: 
1063360
Funding Period: 
Fri, 10/01/2010 to Mon, 09/30/2013
Full Description: 

This exploratory study by researchers at WestEd is examining ways that teacher-level factors (including teacher background variables and instructional practices) and student-level factors (such as self-rated mathematics interest and proficiency), and interactions among these factors, are associated with American Indian/Alaska native (AI/AN) student academic achievement in middle grades mathematics. The ultimate goal is to identify malleable factors that, if changed, could improve teachers' practices and AI/AN student achievement in mathematics.

The study has two main phases. Phase I is exploring data from the 2007 National Indian Education Study (NIES), which compiled information on student performance on NAEP assessments and collected information from a large sample of AI/AN students and their teachers through individual questionnaires. The NIES information links NAEP performance data and NIES survey data in ways that will assist understanding of how particular teacher-level factors and student-level factors (and the interactions between these two factors) relate to student learning. Hierarchical linear modeling (HLM) is being used to study the relationship between student/teacher-level factors and student performance. Phase II of the study involves qualitative analysis of data from several hundred interviews and classroom observations in selected schools at three sites in Alaska, Arizona, and New Mexico to enable deeper understanding of AI/AN contexts of teaching and learning and why particular teacher-level and student-level factors are/are not associated with student performance on the NAEP mathematics assessment as analyzed in Phase I.

Study data sources and application of multi-level modeling techniques will shed light on how teachers in particular cultural settings apply standards, adapt and implement curriculum, and assess their students in ways that promote student learning and achievement. The long-term payoff from this work will be enhanced understanding of ways to provide culturally responsive STEM education and increased performance and participation of AI/AN students in STEM careers and STEM-affected social and personal decision-making.

Astrobiology in the Secondary Classroom Project: An Interdisciplinary Curriculum Developed by a Collaboration of Scientists and Educators from Three Different Minority Communities

This project is designed to enhance an existing interdisciplinary high school science curriculum—Astrobiology in the Secondary Classroom (ASC)—in an innovative way and conduct research to determine the effectiveness of these materials in three different underrepresented student populations—African Americans, Hispanics, and Native Americas—experiencing an achievement gap in STEM areas at five sites. Improvements will focus on program alignment and increased use of data sets made available by research scientists.

Lead Organization(s): 
Partner Organization(s): 
Award Number: 
0733188
Funding Period: 
Sat, 09/01/2007 to Tue, 08/31/2010
Project Evaluator: 
Dragonfly Enterprises
Full Description: 

Introduction
     The intent of the Astrobiology in Secondary Classrooms project is to establish a successful model for creating the scientists of tomorrow by bringing powerful technology tools and current scientific data into an interdisciplinary curriculum focused on reaching all students. Goals for students participating in the ASC curriculum in their classrooms include:

- An understanding of the research pursuits and findings of key astrobiology researchers

- An appreciation for scientific research and the current knowledge base available in astrobiology

- A high degree of scientific and technological literacy

- A desire to continue their studies in STEM areas, particularly in areas pertaining to astrobiology  

The ASC curriculum tackles many of the current problems in science education by addressing curriculum issues as well as minimizing classroom limitations that affect science instruction, particularly in classrooms containing high numbers of students underrepresented in science careers. Many science curricula, including textbooks, lack connections among different academic disciplines and do not provide students with a coherent framework for both science literacy and content knowledge. The ASC modules are being developed using research-based teaching strategies designed to diminish achievement gaps and increase the participation of underrepresented groups in science, technology, engineering, and mathematics (STEM).
    The ASC project began in 2003 with a team of university faculty from minority serving institutions and teachers selected by members of the Minority Institution Astrobiology Collaborative (MIAC). Working with scientists at the Goddard Center for Astrobiology, the team developed the ASC curriculum framework. Now, through this network of minority-serving institutions, the ASC staff seeks to enable middle and high school teachers across the United States to include astrobiology-related activities in their classrooms. Major partners during the field-testing phase of the materials are sites designated as NASA Science, Engineering, Mathematics and Aerospace Academies (SEMAA). Partnerships with SEMAA programs and other minority serving locations allow for a focus on diversity when field-testing and developing the ASC curriculum in both formal and informal educational settings. There were field-testing sites in eight different locations where more than 80 percent of the students are members of the Native American, African American, or Hispanic American communities.

Theoretical Framework and Influences
      Research supports the use of astrobiology as a framework for increasing science literacy (Astrobiology Design Project Team, 2002; Carrapiço, et al. 2001; Rodrigues & Carrapiço, 2005; Slater, 2006; Staley, 2003; Tang, 2005) because of its interdisciplinary nature. Furthermore, partnerships between curriculum developers, teachers, professional scientists and NASA researchers will provide the “real-world” contexts that are recognized as a vital part of science literacy and increasing student interest and understanding of STEM areas.
    The pedagogical side of the ASC curriculum has been grounded in three evidenced-based practices shown to increase achievement among all students and specifically among ethnically diverse students:
The Five Standards for Effective Pedagogy developed by the Center for Research on Education Diversity and Excellence (CREDE) provide a framework for culturally relevant instruction (Tharp, et al., 2003).  The ASC Curriculum incorporates these principles in each of the modules in recognition of the importance of cultural awareness and the dynamics of learning in diverse settings (Lee & Luykx, 2006; Aikenhead, 2001; Lynch, et al., 2005).
The ASC Curriculum includes differentiated instruction that provides teachers with strategies for scaffolding that is a necessary part of effective teaching with varying levels of prior knowledge and understanding.
In their work with the NSF funded VISIT Teacher Enhancement Project, Hunter and Xie detailed the barriers for teachers accessing and using the vast amounts of data on the Internet (Hunter & Xie, 2001). The ASC project worked to partner curriculum developers and teachers with astrobiology researchers to develop scientific data sets that are user-friendly in the high school classroom as well as provide much needed materials and laboratory supplies in order to overcome these barriers.

Program Evaluation
    Evaluation of the ASC curriculum includes web-based collaborations among teachers, scientists and curriculum developers to enhance the modules. Research data is currently being collected and analyzed as part of a three year pilot study funded by the National Science Foundation. The activities and resulting research is looking at a broad spectrum of variables including change in confidence levels of teachers in the use of research-based instructional strategies, their comfort level in new science content knowledge, and teacher perceptions of change in student academic behavior along with science achievement. In addition to teacher self-report surveys and interviews the project staff gathered student survey data on science interest and performance scores on end of module assessment questions. The intent of evaluating these areas through both teacher and students data is to measure the impact of the ASC curriculum on diverse groups of students using a variety of assessment instruments and work samples. The project staff uses this formative evaluation information to revise the ASC curriculum.
        A variety of instruments are used to gather data  on the ASC curriculum. Initial findings during year one and two of the grant were designed to determine the success of the ASC materials in meeting the goals of the grant. There are two main types of instruments employed: instruments geared towards teachers and instruments geared towards students. Teacher instruments included surveys completed on paper and mailed in, surveys deployed online, teacher lesson plan feedback, and teacher interviews.
      In addition to formal assessments of student content knowledge and interest in areas of science, analysis of work samples of students have been valuable in assessing changes in student and teacher thinking through the course of the three years of this pilot-testing project.  Data about the community of learners were also obtained through analysis of electronic communication and collaboration with the teachers, students and scientists.
  
 Summary of Research Efforts
    The final phase of data gathering and analysis is currently underway, with data obtained from teachers and students at each of 4 sites. Student data gathered consists of student work samples, attitude/interest surveys, and practice questions from the ACT test of Science Reasoning. Data gathered from teachers consists of curriculum maps combining state standards and ASC curriculum activities/assessments, teacher retrospective surveys of confidence and impact, self-report classroom observation forms, and written feedback on individual ASC lessons. These sources of data will be combined to produce a final ASC curriculum product suitable for NASA review (in order to become an official NASA curriculum product) and research on the effectiveness and impact of this curriculum upon diverse groups of students.

Preliminary Results from Teachers:
Teacher self report data indicate that the ASC curriculum has a coherent framework that is aligned with research-based pedagogy for diverse students (qualitative data from structured interviews).
Teachers reported that the ASC Curriculum had a major impact on student interest and performance
The ASC curriculum contains activities and professional development opportunities that allow teachers to educate diverse groups of students. Teachers had a high degree of satisfaction with the professional development giving the ASC training a perfect rating of 4.0/4.0 on the end of session surveys.
Feedback from teachers suggests that they were able to teach the ASC curriculum to their students and in so doing gained confidence in scientific knowledge and the use of instruments

Research Questions: Student Impacts
- Did the ASC curriculum supported student understanding of core STEM content and basic STEM concepts in formal educational settings (high school classrooms) as well as in informal educational settings after school as measured by educator feedback?

- Does the ASC curriculum increased science literacy in diverse groups of students as measured by scores on a practice version of the ACT test of Science Reasoning?

-Does the ASC curriculum provide unique questions that increased student interest in STEM areas as measured by student interest surveys?

For more information about the ASC Curriculum development program visit the website: http://www.astroclassroom.org

Summary
    The ASC modules will provide a web-based interdisciplinary curriculum in astrobiology that is free and easily accessible by the public. The curriculum is designed to supplement existing state curricula by providing a framework that draws all areas of science together through engaging activities, providing teachers with activities that meet both state and national standards along with encouraging science literacy. Accomplishing this goal will involve modification of modules based on feedback from teachers during professional development and implementation with students in formal and informal educational settings. Research during the field-testing phase of the project is currently assessing the impact of these crosscutting activities on student performance and attitudes about science along with student interest in STEM careers.

Math Pathways and Pitfalls: Capturing What Works for Anytime Anyplace Professional Development

Math Pathways & Pitfalls lessons for students boost mathematics achievement for diverse students, including English Learners, English Proficient students, and Latino students. This project develops modules that increase teachers’ capacity to employ the effective and equitable principles of practice embodied by Math Pathways & Pitfalls and apply these practices to any mathematics lesson. This four-year project develops, field tests, and evaluates 10 online professional development modules.

Lead Organization(s): 
Award Number: 
0918834
Funding Period: 
Tue, 09/15/2009 to Fri, 08/31/2012
Full Description: 

Researchers and developers at WestEd are developing, field-testing, and evaluating ten online professional development modules anchored in research-based teaching principles and achievement-boosting mathematics materials. The modules provide interactive learning opportunities featuring real classroom video demonstrations, simulations, and scaffolded implementation. The professional development module development builds on the Math Pathways and Pitfalls instructional modules for elementary and middle school students developed with NSF support. The professional development provided through the use of these modules is web-based (rather than face-to-face), is provided in chunks during the school year and immediately applied in the classroom (rather than summer professional development and school year application), and explicitly models ways to apply key teaching principles to regular mathematics lessons (rather than expecting teachers to extract and apply principles spontaneously).

The project studies the impact of the modules on teaching practice with an experimental design that involves 20 treatment teachers and 20 control teachers. Data are gathered from teacher questionnaires, classroom observations, and post-observation interviews.

Pages

Subscribe to American Indians/Alaska Natives