High School

Developing and Investigating Unscripted Mathematics Videos

This project will use an alternative model for online videos to develop video units that feature the unscripted dialogue of pairs of students. The project team will create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level.

Lead Organization(s): 
Award Number: 
1907782
Funding Period: 
Sun, 09/01/2019 to Thu, 08/31/2023
Full Description: 

This project responds to the recent internet phenomenon of widespread accessibility to online instructional videos, which offer many benefits, such as student control of the pace of learning. However, these videos primarily focus on a single speaker working through procedural problems and providing an explanation. While the immense reach of free online instructional videos is potentially transformative, this potential can only be attained if access transcends physical availability to also include entry into important disciplinary understandings and practices, and only if the instructional method pushes past what would be considered outdated pedagogy in any other setting than a digital one. This project will use an alternative model for online videos, originally developed for a previous exploratory project, to develop 6 video units that feature the unscripted dialogue of pairs of students. The project team will use the filming and post-production processes established during the previous grant to create a repository of 6 dialogic mathematics video units that target important Algebra 1 and 2 topics for high school and upper middle school students, though the approach can be applied to any STEM topic, for any age level. They will also conduct 8 research studies to investigate the promise of these unscripted dialogic videos with a diverse population to better understand the vicarious learning process, which refers to learning from video- or audio-taped presentations of other people learning. Additionally, the project team will provide broader access to the project videos and support a variety of users, by: (a) subtitling the videos and checking math task statements for linguistic accessibility; (b) representing diversity of race, ethnicity, and language in both the pool of students who appear in the videos and the research study participants; (c) providing teachers with an array of resources including focus questions to pose in class with each video, printable task worksheets, specific ways to support dialogue about the videos, and alignment of the video content with Common Core mathematics standards and practices; and (d) modernizing the project website and making it functional across a variety of platforms.

The videos created for this project will feature pairs of students (called the talent), highlighting their unscripted dialogue, authentic confusion, and conceptual resources. Each video unit will consist of 7 video lessons (each split into 4-5 short video episodes) meant to be viewed in succession to support conceptual development over time. The project will build upon emerging evidence from the exploratory grant that as students engage with videos that feature peers grappling with complex mathematics, they can enter a quasi-collaborative relationship with the on-screen talent to learn complex conceptual content and engage in authentic mathematical practices. The research focuses on the questions: 1. What can diverse populations of vicarious learners learn mathematically from dialogic videos, and how do the vicarious learners orient to the talent in the videos? 2. What is the nature of vicarious learners' evolving ways of reasoning as they engage with multiple dialogic video lessons over time and what processes are involved in vicarious learning? and, 3. What instructional practices encourage a classroom community to adopt productive ways of reasoning from dialogic videos? To address the first question, the project team will conduct two Learning Outcomes and Orientation Studies, in which they analyze students' learning outcomes and survey responses after they have learned from one of the video units in a classroom setting. Before administering an assessment to a classroom of students, they will first conduct an exploratory Interpretation Study for each unit, in which they link the mathematical interpretations that VLs generate from viewing the project videos with their performance on an assessment instrument. Both types of studies will be conducted twice, once for each of two video units - Exponential Functions and Meaning and Use of Algebraic Symbols. For the second research question, the project team will identify a learning trajectory associated with each of four video units. These two learning trajectories will inform the instructional planning for the classroom studies by identifying what meaningful appropriation can occur, as well as conceptual challenges for VLs. By delivering learning trajectories for two additional units, the project can contribute to vicarious learning theory by identifying commonalities in learning processes evident across the four studies. For the final research question, the project team will investigate how instructors can support students with the instrumental genesis process, which occurs through a process called instrumental orchestration, as they teach the two videos on exponential functions and algebraic symbols.

Teaching Students to Reason about Variation and Covariation in Data: What Do We Know and What Do We Need to Find Out?

The purpose of this project is to gather, analyze, and synthesize mathematics and science education research studies published from 1988 to the present that have investigated different approaches to supporting students in grades 6-14 in learning to analyze, interpret, and reason about data.

Lead Organization(s): 
Award Number: 
1920119
Funding Period: 
Mon, 07/01/2019 to Wed, 06/30/2021
Full Description: 

Because data are so much a part of modern life, making sense of data is a skill that benefits all members of society. Reasoning about data has been described as one of the most important cognitive activities and making sense of data is essential for a public's informed civic participation. But the public's ability to make sense of data is not what it should be. There is an important role for educators to play in supporting students' ability (and ultimately the public's ability) to be savvy consumers of data. But education researchers lack a coherent vision of the current best practices for supporting students in analyzing, interpreting, and reasoning about data. Existing research focused on supporting students in learning to analyze, interpret, and reason about data tends to reside in silos by grade band and by math or science domain. The purpose of this project is to gather, analyze, and synthesize mathematics and science education research studies published from 1988 to the present that have investigated different approaches to supporting students in grades 6-14 in learning to analyze, interpret, and reason about data. The researchers will carefully examine the nature of each education intervention and what the researchers found in each case, looking for patterns across studies. The findings of this study can inform mathematics and science education developers in the production of instructional programs for teachers and students.

The researchers will gather, analyze, and synthesize studies in mathematics and science education from 1988 to the present that examine instruction related to variation and covariation in data. The team will first conduct a descriptive synthesis including a wide array of studies (qualitative, single group pre/post, and experimental/quasi-experimental) and examine the nature of interventions in the field. Next, researchers will conduct a statistical meta-regression of experiments and quasi-experiments using Robust Variance Estimation (RVE) to examine how effect size estimates from primary studies depend on intervention characteristics, study design, outcomes of interest, and demographic characteristics of participants in the studies. The project will help researchers across math and science education build on each other's work and ultimately develop and refine highly effective approaches for supporting students in the life-long skill of making sense of data in a complex world.

Invigorating Statistics Teacher Education Through Professional Online Learning (InSTEP)

This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms.

Project Email: 
Award Number: 
1908760
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Project Evaluator: 
Full Description: 

Implementing meaningful statistics education in middle and high schools has been a persistent challenge in the United States. Statistics and data science are critical domains for STEM careers and the general data literacy of the citizenry. This project seeks to strengthen the teaching of statistics and data science in grades 6-12 through the design and implementation of an online professional learning environment for teachers. The professional learning environment aims to support in-service teachers in developing stronger content knowledge related to statistics, and knowledge of how to effectively teach statistics in their classrooms. The project will also evaluate a model of professional development that integrates personalized online learning and microcredentialing (earning small-scale certifications) to better understand its effectiveness in supporting teacher learning. The project will draw from previous work to assemble online modules that engage teachers in doing high-quality statistics and data science tasks, the analysis of video of teachers' and students' work with those tasks, learning a pedagogical framework for teachers to implement the tasks, and exploring guidelines for identifying and developing high-quality statistics and data science tasks. The project will study teacher learning through the use of these modules, and the pathways that teachers choose through them to understand the effectiveness of the model.

The project builds on previous work by the investigators to develop research-based teacher professional development modules that support learning about statistics and statistics education in grades 6-12. Materials currently developed include a series of microcredentials with design features consistent with research on effective teacher professional development. They include opportunities for teachers to engage with statistics content appropriate to the target grade levels they teach, active learning opportunities that engage them with teachers in similar contexts, and a coherent focus that builds on the knowledge and experience teachers bring to the table. The project will take place in iterative phases, beginning with focus groups of middle and high school teachers and district leaders based on first drafts of the materials. This will be followed by cognitive interviews with teachers who engage in the microcredential ecosystem which will inform modifications to the system. Following this phase, cohorts of teachers (25 in the first cohort, 75 in the second) will participate in scaffolded professional development engagement with the materials, and will be assessed with respect to changes in their knowledge and practice. The project will assess changes in teacher knowledge using reliable and valid measures of statistics knowledge and practice. Data will be collected from the online platform regarding teacher engagement and usage to better understand usage and pathways through the materials. The professional learning platform will be made available as a free and open online source at the close of the project.

Alternative video text
Alternative video text: 

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Murray)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908319
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Jabon)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908311
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Building a Teacher Knowledge Base for the Implementation of High-Quality Instructional Resources through the Collaborative Investigation of Video Cases (Collaborative Research: Wilson)

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation.

Lead Organization(s): 
Award Number: 
1908185
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will address the pressing national need to generate shared, practice-based knowledge about how to implement freely available, high-quality instructional resources (mathematics formative assessment lessons) that have been shown to produce significant gains in student learning outcomes. It will expand a professional development model (Analyzing Instruction in Mathematics using the Teaching for Robust Understanding Framework (AIM-TRU)) that supports teacher learning about effective lesson implementation. The backbone of AIM-TRU is a growing, open repository of video cases available to teachers and teacher educators across the U.S. who use or are interested in using the lessons. The repository will include tools such as a facilitator's guide to support teachers and teacher educators to engage in the model and collaboratively investigate the video cases. Consequently, the work will have the potential to engage teachers and teacher educators in improving mathematics education at scale. Because the video cases will capture implementation and ideas for improving instruction in schools serving populations who are underrepresented in mathematics, AIM-TRU will serve to improve mathematics education equitably.

Research questions focus on what teachers learn about high-quality mathematics instruction and instructional materials within a community of practice, and how that learning influences their teaching. In AIM-TRU, teachers engage in the collaborative investigation of video cases utilizing a shared repertoire that includes questioning protocols adapted from the Teaching for Robust Understanding (TRU) framework. This framework articulates five dimensions of classroom instruction that are necessary and sufficient to support students in becoming powerful mathematical thinkers. This affords teachers opportunities to use the TRU dimensions as lenses to diagnose common problems of practice that arise in implementation, and propose innovations and theories for improving instruction that can be tested in real classrooms and documented in new video cases. Analytic tools will be used from frame analysis to produce empirical evidence of what teachers are learning about instruction and instructional materials along the five dimensions of TRU. These data will be mapped to a random sample of video recordings of participating teachers' instruction, scored using the TRU Math Rubric, in order to link learning outcomes from the professional development to changes in instruction. Addressing these research questions will provide a deeper understanding and empirical evidence of learning within teacher collectives, the pressing national need to develop mechanisms to produce collective professional knowledge for teaching, and further efforts to understand the types of knowledge required for effective teaching.

Developing Learning Environments that Support Molecular-Level Sensemaking

This project will investigate how high school students can be supported in developing, organizing and using knowledge of atomic/molecular behavior to make sense of phenomena such as phase changes, atomic emmision spectra and dissolution. The project will study whether an innovative college level curriculum, "Chemistry, Life, the Universe and Everything" (CLUE) can be co-modified by teachers, chemists, and researchers to help students master these difficult concepts and connections.

Project Email: 
Lead Organization(s): 
Award Number: 
1906293
Funding Period: 
Sat, 06/15/2019 to Wed, 05/31/2023
Project Evaluator: 
Full Description: 

This project will investigate how high school students can be supported in developing, organizing and using knowledge of atomic/molecular behavior to make sense of phenomena such as phase changes, atomic emmision spectra and dissolution. Prior research has shown that many students are unable to construct representations of simple molecular structures. Many fail to make the important connection between these representations and macroscopic properties of the material. In addition, students are often unable to decode the information contained in such representations. A pilot study indicated that adapting college-level, evidence-based conceptual progressions for use in high school has the potential to aid students in connecting molecular-level structure to measurable properties. This project will study whether an innovative college level curriculum, "Chemistry, Life, the Universe and Everything" (CLUE) can be co-modified by teachers, chemists, and researchers to help students master these difficult concepts and connections.

There are four research questions: 1) How should opportunities be designed to help students make molecular level sense of phenomena and design solutions to problems?; 2) What evidenced-based,scaffollded core idea sequences support high school students in making sense of phenomena in terms of atomic/molecular behavior; 3) What changes do teachers make to the materials?; and 4) What factors motivate teachers to make these changes? Several methods will be used to assess student learning. The project will use OrganicPad, a tablet-PC program that can recognize, record, and grade student free-form naturalistic structure drawings and a validated survey that asks students to identify the kinds of information they believe can be deduced from electron dot diagrams. In addition, the researchers will collect data using learning observation protocol that will describe what the student and instructor do.  For the teacher, the protocol will focus on  the "what" of teaching: lecturing, follow-up/feedback on questions, listening to and answering students questions. For the students, the protocol will focus on activities such as listening, discussing with other students, working in groups, class discussions, presentations, and tests.

Alternative video text
Alternative video text: 

Environmental Innovation Challenges: Teaching and Learning Science Practices in the Context of Complex Earth Systems

This project will engage teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.

Project Email: 
Lead Organization(s): 
Award Number: 
1908117
Funding Period: 
Thu, 08/01/2019 to Mon, 07/31/2023
Project Evaluator: 
Full Description: 

Current priorities in science education include efforts to engage students in scientific reasoning and using the knowledge and practices of science to understand natural phenomena and constructively respond to local and global challenges. This project responds to these priorities by engaging teams of students and teachers of grades 7-12 in four competitive Challenges to design innovative strategies for carbon mitigation in areas such as transportation, agriculture or energy use. The project expands the typical boundaries of schools by enabling teams of students in multiple locations to collaborate in model-based reasoning through online discussion forums, using social media, and crowdsourcing ideas to construct possible solutions to environmental challenges. Project research will examine the impacts of the project on student learning and engagement.

This early stage Design and Development study is guided by the hypothesis that competitive challenges supported by social media and crowdsourcing will engage a diverse array of students in sustained and meaningful scientific inquiry. Over a period of four years, the project will design and refine four Challenges that will engage approximately 1,000 students of ages 13-17. Project research is guided by three overarching questions related to the design of the Challenges, the influence of school contextual factors, and student learning and self-efficacy. The questions are: (1) How do features of the challenge environment support the work of teams, and the participation of students from communities historically underserved in STEM? (2) What structures within the school ecosystem support or raise obstacles to team work? And (3) Does participation in a Challenge result in the intended student outcomes. Intended outcomes include: a) Learning of basic concepts related to the science of the project focus; b) Engagement in learning disciplinary core ideas, cross-cutting concepts and science and engineering practices; c) Persistence in completing a Challenge; and d) self-efficacy in STEM. Students and their teachers will cross disciplinary boundaries as they choose concepts from chemistry, engineering, mathematics, biology, and social science to support their innovations.Teachers, students, staff members and advisors will comment and provide quidance to the teams on a range of issues through crowdsourcing. Design research will be used to examine how features of the Challenge environment supports the work of teachers and teams, and implementation research will focus on participant learning at the individual and team levels. The project will engage at least 25 teams of 3-4 students each, and researchers will track team activity during all phases of the Challenge process. A mixture of qualitative and quantitative analyses will be used to examine outcomes, and data for girls and others from underserved populations will be disaggregated for separate analyses.

Alternative video text
Alternative video text: 

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Scherr)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Lead Organization(s): 
Award Number: 
1907815
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Professional Development for Teaching and Learning about Energy and Equity in High School Physics (Collaborative Research: Mason)

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow. The project will create a model for secondary science teacher professional development that integrates science concepts with equity education.

Partner Organization(s): 
Award Number: 
1907950
Funding Period: 
Mon, 07/01/2019 to Fri, 06/30/2023
Full Description: 

This project will research and develop instructional materials and conduct professional development for teachers to help students understand energy flow, an important scientific concept with economic and social implications. This energy learning is the foundation for informed decision-making about sustainable and just use of energy resources. Energy issues are not only issues of science and technology, but must be integrated with civics, history, economics, sociology, psychology, and politics to understand and solve modern energy problems. Placing the scientific concept of energy in this social context presents an opportunity to advance science education as equitable and culturally responsive.

This project will create a model for secondary science teacher professional development that integrates science concepts with equity education. This model promotes a key epistemological issue: that science concepts are not culture-free or socially neutral ideas, but rather are concepts created and sustained by people in specific times and places for the purposes of (1) addressing specific social needs and (2) empowering people or groups of people. The two major components of the project are (1) the professional development experience, including both an intensive in-person summer workshop and an online professional learning community, and (2)an energy and equity portal, including an instructional materials library, an action research exchange, and a community forum for teacher discussions. The portal will provide technical resources to support the PLC, including support for sharing instructional materials and reporting on action research. The research plan includes exploratory, development and application phases. The researchers will identify teacher learning in the first iteration of PD, collect and analyze the instructional artifacts to inform how teacher engage with, participate in, and build an understanding energy as a historically and politically situated science concept. A team of scholar-videographers will observe, taking real-time field notes and making daily memos. The research team will use the instructional artifacts, video recordings, field notes, and memos as a basis for analysis through the next academic year. The result will be a nationally significant community of teacher-leaders and library of research-tested instructional materials that are responsive to students' scientific ideas, relevant to socio-political concerns about energy sustainability, respectful of students' cultures, and open to all students no matter their cultural background. Teachers participating in the project will learn to explain how scientific concepts of energy reflect culturally specific values, analyze socio-politically relevant energy scenarios, learn the historic and present-day inequities in the energy industry and in science participation, and be supported in preparing instruction for secondary students that is culturally responsive and relevant to their students' communities.

Pages

Subscribe to High School