Elementary School

Ed+gineering: An Interdisciplinary Partnership Integrating Engineering into Elementary Teacher Preparation Programs

Principal Investigator: 

While new standards call for elementary students to learn engineering, many teachers do not receive any training in engineering and feel underprepared to teach it. Ed+gineering partners preservice teachers with engineering undergraduate students at three points during their respective preparation programs to develop and teach engineering lessons to elementary students. These three collaborations help engineering students develop interdisciplinary collaboration skills while helping preservice teachers develop the competence and confidence to integrate engineering.

Click image to preview: 

Science Communities of Practice Partnership

Principal Investigator: 

Despite widespread agreement about the importance of teacher professional development (PD), translating what is learned in PD to classroom practice remains challenging. Guided by Self Determination Theory, this study examines how PD facilitators, including pedagogical coaches and university faculty, support the three basic needs for autonomy, competence, and relatedness for teachers' intrinsic motivation as learners in PD focused on reform-based science instruction. Study findings include high-leverage practices that facilitators can use to support teacher motivation.

Click image to preview: 
Image of Poster
Target Audience: 

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Wilson)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100903
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Mawhinney)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100833
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: Schwartz)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Lead Organization(s): 
Award Number: 
2100895
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Co-Designing for Statewide Alignment of a Vision for High-Quality Mathematics Instruction (Collaborative Research: McCulloch)

This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

Award Number: 
2100947
Funding Period: 
Thu, 07/15/2021 to Mon, 06/30/2025
Full Description: 

Mathematics teaching and learning is influenced by policy and practice at the state, district, and school levels. To support large-scale change, it is important for high-quality mathematics instruction to be aligned and cohesive across each level of the education system. This can be supported through regional partnerships among state, district, and school-based leaders, mathematics teachers, education researchers, and mathematicians. Such partnerships create instructional tools and resources to document the vision for instruction. For example, teams can work together to create instructional frameworks for each grade band that describe standards, mathematics teaching, and units for teaching. This project will develop a process for creating a shared, state-wide vision of high-quality mathematics instruction. It will also develop and study the resources to implement that vision at the state, district, and school levels. In addition, the project will investigate a collaborative process of designing and implementing high-quality mathematics instruction at a state level.

This project will develop a shared vision of high-quality mathematics instruction intended to improve systemic coherence during the implementation of education innovations. The project uses a research-practice partnership with a design-based implementation research design. To examine and support implementation of the vision, partners will continue a process of developing instructional frameworks, research and practice briefs, as well as additional resources as needed by stakeholders in the system. Engaging partners at all levels of the system is a central component of developing the shared vision of instruction. This project includes three major research questions. First, what are visions of high-quality mathematics instruction held by educators at different levels of a state educational system? Second, in what ways do educators' visions of high-quality mathematics instruction mediate their use of implementation resources in practice? Finally, in what ways do educators’ visions of high-quality mathematics instruction mediate their participation in the co-design of implementation resources? An activity theory framework is used to understand the interactions between partners at different levels in the system and the creation of artifacts during the design process. The research methods for the study are situated in design-based research to capture the conjectures, instructional resources, design processes, and outcomes of the process. The project will use case studies of partner districts, data gathering from interactions with partners, artifacts of the design process, and other documentation to understand how the vision is created and enacted in different settings and to develop an empirically supported design framework and methodology for implementing STEM innovations at scale that centralizes a shared instructional vision.

Teacher Collaborative for Culturally Relevant Mathematics and Science Curricula

Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms.

Lead Organization(s): 
Award Number: 
2101532
Funding Period: 
Tue, 06/15/2021 to Tue, 05/31/2022
Full Description: 

To be effective, teachers need a strong theoretical understanding of the frameworks that support success for all students, especially those students historically underserved by schools. Culturally relevant pedagogy (CRP) is a framework that puts students and their experiences at the center of teaching. Culturally relevant math and science teaching (CRMST), more specifically, describes equitable science and math teaching practices that support student success in schools. This project involves elementary teachers in a 3-day conference focusing on CRP and CRMST. The conference is designed to form a teacher collaborative to share experiences and resources, learn from one another, and create their own culturally relevant science and math units for use in their classrooms. To boost teacher learning, the conference includes a variety of workshops and activities led by local and national content area experts, teacher educators, and STEM teacher-leaders who use culturally relevant science/math curricula in their classrooms. In the year following the conference, teachers will be strategically supported to continue designing and implementing CRMST through monthly teacher collaborative meetings and in-classroom support. At the end of the project year, teachers will participate in a public curriculum fair that showcases their projects and allows them to share what they have learned.

The research component of this project will use culturally relevant pedagogy and a framework that describes trajectories of development for CRMST as theoretical and analytical frameworks. In particular, the latter framework describes levels of engagement with key ideas from CRP and attends to, for example, whether teachers engage with transformative decision making, grapple with issues from an individual or structural perspective, and recognize tensions and discomfort in their learnings about CRMST. The research will focus on learning more about how teachers benefit from collaborative opportunities and how they develop understandings about CRMST.  Data sources will include: culturally relevant mathematics and science curricula (CR-MASC) units, classroom observations, field notes, and surveys collected from the teacher participants. Findings about practices and structures that support teachers’ movement towards CRMST, as well as exemplary CR-MASC units, will contribute to research and practice in teacher education aimed at improving science and math learning experiences for marginalized learners.

Facilitating Formative Feedback: Using Simulations to Impact the Capability of Novice Mathematics Teachers

This project explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics.

Lead Organization(s): 
Award Number: 
2101343
Funding Period: 
Wed, 09/01/2021 to Sun, 08/31/2025
Full Description: 

During their initial teacher preparation experiences, preservice teachers need meaningful formative assessment that can support them in developing their skills and practices as new teachers of mathematics. While field placements offer some such opportunities, too often preservice teachers are not able to see, experience, and enact a full range of research-based effective mathematics teaching practices. This level II four-year design and development study in the assessment strand explores the ways in which thoughtfully designed simulations can provide preservice teachers with formative assessment opportunities that serve as a complement to, or alternative to as needed, feedback derived from field placement contexts. A set of simulations will be designed with a focus on eliciting and interpreting student thinking. These simulations will be used with preservice teachers in three elementary teacher preparation programs of varying size and demographics. Data will be collected to understand the ways in which the feedback from engaging in the simulations serves to strengthen preservice teachers' abilities to elicit and interpret student thinking through an analysis of performance in the simulations, interviews with preservice teachers, and feedback from teacher educators. An associated study will establish the reliability and validity of the simulations as assessment tools.

Simulations will be developed and tested in three cycles, with iterative improvements made between each cycle. The first cycle will involve 10 preservice teachers in a pilot study separate from participation in a course, in which preservice teachers engage in a simulation, receive formative feedback, and engage in a second similar simulation. This cycle will evaluate the extent to which feedback appears to influence subsequent performance. In the second cycle, the project will work with three teacher educators in diverse contexts to enact the simulations with all preservice teachers in one section of their elementary mathematics methods courses. In the final cycle, the use of the simulations will shift from a research team actor playing the role of the student to a site-based actor recruited by the teacher educators at each of the three institutions. To validate the tools, researcher reliability and teacher educator reliability studies will be conducted to asses the extent to which the four different simulation assessments provide consistent feedback on the targeted teaching practices and the extent to which the scoring of the assessments are reliable. A G study (generalizability study) will be conducted to evaluate the extent to which the teacher participant is the primary source of variation as compared to variations from student actors or the rater administering the assessment. Results will be disseminated in a variety of mathematics education settings and the simulation materials will be made available to practitioners and adapted for additional use in  mixed-reality simulation platforms.

Accessible Computational Thinking in Elementary Science Classes within and across Culturally and Linguistically Diverse Contexts (Collaborative Research: Nelson)

This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction.

Lead Organization(s): 
Award Number: 
2101039
Funding Period: 
Sun, 08/15/2021 to Wed, 07/31/2024
Full Description: 

Currently, students who are white, affluent, and identify as male tend to develop a greater interest in and pursuit of science and computing-related careers compared to their Black, Latinx, Native American, and female-identifying peers. Yet, science, computing, and computational thinking drive societal decision-making and problem-solving. The lack of cultural and racial diversity in science and computing-related careers can lead to societal systems and decision-making structures that fail to consider a wide range of perspectives and expertise. Teachers play a critical role in preparing students to develop these skills and succeed in a technological and scientific world. For this reason, it is crucial to investigate how teachers can help culturally and linguistically diverse students develop a greater understanding of and interest in science and computers. This research project aims to enhance elementary teacher education in science and computational thinking pedagogy through the use of Culturally Relevant Teaching, i.e. teaching in ways that are relevant to students from different cultural and linguistic backgrounds. The project will support 60 elementary teachers in summer professional development and consistent learning opportunities during the school year to learn about and enact culturally relevant computational thinking into their science instruction. In doing so, the project aims to increase both the quantity and quality of computing experiences for all elementary students and support NSF’s commitment in broadening participation in the STEM workforce. The project will also produce resources, measures, and tools to support elementary teachers to do this kind of work, which will be shared with other STEM researchers and teacher educators.

The goal of this research project is to design and promote teaching practices that integrate computational thinking in the elementary science classroom in culturally relevant ways. This project will seek to empower practicing elementary teachers’ approaches to meaningfully and effectively integrate and adapt computational thinking into their regular science teaching practice so that all students can access the curriculum. It will also explore the impact of these approaches on student learning and self-efficacy. The scope of this project will include working with multiple highly distinct school settings in Maryland, Arizona, and Washington DC across three years, reaching approximately 60 elementary teachers and 1,200 students. To achieve the project objectives, the research team will leverage concurrent mixed methods approaches that include teacher and student interviews, reflections, observations, descriptive case study reports as well as regression and multilevel modeling. The project’s findings will inform the fields’ understanding of: (a) teachers’ conceptualization of computational thinking; (b) the barriers elementary teachers encounter when trying to integrate computational thinking with culturally relevant teaching practices; (c) the types of support that are effective in teacher professional development experiences  and throughout the school year; and (d) the development of a cohort of teachers that can maintain integration efforts in different districts.

Pages

Subscribe to Elementary School